
Persistent Relative Homology for Topological
Data Analysis

Christian Lentz

Lori Ziegelmeier, Advisor

Greg Henselman-Petrusek, Reader

Yariana Diaz, Reader

Department of Mathematics, Statistics, and Computer Science

May, 2024

Copyright © 2024 Christian Lentz.

The author grants Macalester College Library the nonexclusive right to make this
work available for noncommercial, educational purposes, provided that this copy-
right statement appears on the reproduced materials and notice is given that the
copying is by permission of the author. To disseminate otherwise or to republish
requires written permission from the author.

Abstract
A central problem in data-driven scientific inquiry is how to interpret struc-
ture in noisy, high-dimensional data. Topological data analysis (TDA) pro-
vides a solution via the language of persistent homology, which encodes
features of interest as holes within a filtration of the data. The recently
presented U-Match Decomposition places the standard persistence com-
putation in a flexible form, allowing for straight-forward extensions of the
algorithm to variations of persistent homology. We describe U-Match De-
composition in the context of persistent homology, and extend it to an algo-
rithm for persistent relative homology, providing proofs for the correctness
and stability of the presented algorithm.

Contents

Abstract i

1 Introduction 3

2 Background 5
1 Persistent Relative Homology 5
2 The U-Match Decomposition 12

3 An Algorithm for PRH 17
1 Constructing the Boundary Matrix 17
2 Decomposition and Permuting COMBs 20
3 Matching Bases . 26

4 Stability 29
1 Persistence Modules and the Isometry Theorem 29
2 Stability of the U-Match PRH Algorithm 31

5 Conclusion 33

Bibliography 35

1. Introduction
Persistent homology was first introduced as a means of topological simplifi-
cation, where homology encodes the topological complexity of point cloud
data and a scale filtration describes the persistence of features. With this
came the introduction of pair persistence algorithms for subcomplexes of S3
over the field Z2, which was the first means of computing persistence [1],
[2]. Following this were generalizations and optimizations of the algorithm.
Some of these notable advances include an extension to complexes of ar-
bitrary dimension over arbitrary fields [3], generating persistence pairs via
matrix reduction [4], and a clever implementation of the standard matrix
reduction algorithm using sparse matrix formats [5] or column-clearing
approaches [6]. The persistence computation has cubic worst-case time
complexity in the number of simplices, although the worst case is exceed-
ingly rare, especially given optimized implementations.

With the introduction of persistence came the field of Topological Data
Analysis (TDA), as well as techniques for understanding and summarizing
persistence computations. In particular, these include the persistence diagram
[1] and the barcode [7]. While the former encodes the birth-death interval
of a feature with a point on or above the diagonal of the extended plane
R2, the latter explicitly encodes these intervals as bars sorted according to
dimension. Intuitively, features with larger lifetime will require a larger
scale parameter to eliminate the feature. The information contained in a
barcode or persistence diagram can also be summarized by the persistence
module, a sequence of R-modules with associated homomorphisms which
induce inclusions on homology across dimension. The persistence module
was first introduced in [3] as a means of elucidating the structure of persis-
tent homology and has been a key tool used to provide results assuring the
stability of persistence algorithms.

The abundance of literature and applications of persistent homology in
recent years suggests a need to relate existing techniques of computation
to variants such as persistent relative homology (PRH), which describes how
the persistent homology of point cloud data depends on a subset of that
data. Although there is existing work in this area, it is sparse, and without
application. To this end, we provide an algorithm for PRH which is an
extension of the U-Match Decomposition [8]. The rich structure of U-Match
will allow this work to be straightforward and widely accessible.

2. Background
In this chapter we review the key definitions and computational tools
needed for this text. Throughout, we will assume the reader is familiar
with persistent homology. In any other case, we recommend [3], [9] and
[10] to get started.

1 Persistent Relative Homology

Although the existing literature is sparse, this is not the first study of PRH
in the theoretical or algorithmic sense. We start with definitions, notation
and previous work relating to PRH.

1.1 Definitions and Notation

Much of this section is motivated by texts from Edelsbrunner and Harer [5]
and Hatcher [11]. The definitions in this section will inform how we can
make the U-Match Decomposition (see Chapter 2.2) compatible for PRH,
and the notation established here will be carried throughout the rest of this
text. We start by recalling key ideas and tools of persistent homology.

Let K be an abstract simplicial complex satisfying dim(K) = n. For
each p ∈ {0, . . . , n}, define Cp(K) as the chain group that describes the
span of all linear combinations of p-simplices in K. Equivalently, this is a
chain vector space with linear combinations using field coefficients. Rather
intuitively, we call a linear combination of p-simplices a p-chain. Now
consider the linear transformation ∂p : Cp(K) → Cp−1(K) which maps the
basis elements of Cp(K) as follows

[v0v1 . . . vp] 7→
p∑
j=0

(−1)j [v0v1 . . . v̂j . . . vp],

and can be extended linearly to non-basis elements of the vector space
Cp(K). The notation v̂j denotes a single point of thep-simplex [v0v1 . . . v̂j . . . vp]
being removed. This is the (alternating) boundary operator, which maps a
p-simplex in K to a (p− 1)-chain in K which is its boundary.

Using these definitions, we may define a chain complex C•(K) to be a
sequence of chain vector spaces over some simplicial complexK connected

6 Background

by boundary operators which satisfy the property that ∂p−1∂p = 0. This
stipulation on the boundary operators of the chain complex give the intu-
itive idea that the boundary of any p-chain cannot have a boundary itself.
The implications of this statement are rather important, as they imply that
Im(∂p+1) ⊆ Ker(∂p). Thus, any member of Ker(∂p) is a p-chain with no
boundary, which we refer to as a p-cycle. On the other hand, any member
of Im(∂p+1) is a p-cycle which is also the boundary of some (p + 1)-chain.
We refer to such chains as p-boundaries. Figure 2.1 below gives a pictorial
description of these ideas.

. . . C2(K)
∂2−→ C1(K)

∂1−→ C0(K) . . .

Figure 2.1 A simplicial complex (left) and its chain complex (right) with
corresponding chain vector space bases. Note that Im(∂2) ⊆ Ker(∂1).

With these ideas in place, we can define Hp(K) = Ker(∂p)/Im(∂p+1) as
a quotient vector space describing the difference between all p-cycles in K
and the p-cycles in K which are not also the boundary of a (p + 1)-chain.
Equivalently, this is a homology vector space, whereas the more general
homology group is a quotient group. From this point on in the text, we will
refer to this notion of homology as absolute homology.

Traditionally, persistent homology tracks absolute homological features
through a scale filtration of a topological space. For a topological spaceX , a
finite, N -level filtration on X is given by F1X ⊆ F2X ⊆ · · · ⊆ FNX , where
FNX = X . We denote such a filtration as F•X and say that any σ born at
FtX has a filtration value bF (σ) = t. Thus, FtX = {σ ∈ X : bF (σ) ≤ t}.
In words, bF (σ) denotes the birth of σ in the filtration F•. There are a
number of standard computational methods for persistence, some of which
we highlighted in the introduction of this text. For our purpose, we wish
to extend these methods to a class of topological spaces known as quotient
spaces.

Persistent Relative Homology 7

Definition 1. Suppose we have topological spaces X and A such that A ⊆ X .
Then the quotient space is defined as

X/A = (X \A) ⊔ ∗

where * is a single point. Any U ⊆ X/A is open in the quotient topology if and
only if π−1(U) is open in X where π : X → X/A is given by:

π(x) =

{
x if x ∈ X \A
∗ if x ∈ A

In other words, open sets in X are used to define the open sets in X/A.

At a high level, the quotient topology is similar to other quotient struc-
tures across pure mathematics, where by removing certain data or struc-
ture from the problem we obtain a new—and perhaps more informa-
tive—perspective, as seen in Figure 2.2. An equivalent definition of the quo-
tient topology may define an equivalence relation∼ onX where Y = X/ ∼
is the set of equivalence classes of X under the the equivalence relation. In
this formulation, the map π : X → X/ ∼ maps some x ∈ X to its equiva-
lence class [x] ∈ X/ ∼. It is this point of view that we wish to bring into
the context of persistence. Moving forward, we will consider an abstract
simplicial complex K with dim(K) = n and an abstract simplicial complex
K0 such that K0 ⊆ K, rather than more general topological spaces X and
A.

Figure 2.2 The infinite bouquet (right) is a canonical example of a quo-
tient space, and quotients Z from R (figure from [12]).

Many of the definitions and objects we provided when describing ab-
solute homology have analogous counterparts in the quotient space set-
ting. Define the relative chain vector space to be the quotient vector space
Cp(K,K0) = Cp(K)/Cp(K0) for all p ∈ {0, . . . , n}, which describes all linear
combinations of p-simplicies in the quotient space K/K0. We refer to such
linear combinations as relative p-chains. In fact, this quotient partitions a
basis forCp(K) into cosets of the form c+Cp(K0), where c can be any p-chain

8 Background

inK. This implies that the set of equivalence classes {[c]}which correspond
to these cosets constitute a basis for K/K0, which exemplifies the fact that
these chains actually do describe the quotient of the two spaces. Further,
any two chains of a given coset cannot differ by any of the element(s) in
K/K0. Equivalently, if two relative chains differ by a chain in K \K0, then
they, by definition, must be in two different cosets of Cn(K0) in Cn(K).

When describing absolute homology, we defined a boundary operator
∂p : Cp(K) → Cp−1(K), where ∂p maps any basis vector in Cp(K) to a
chain which is its boundary inCp−1(K). However, since ∂p will always map
Cp(K0) to Cp−1(K0), then the relative boundary operator, which maps
relative chains to their boundaries, is induced by the boundary operator
∂p. This implies that the chain complex C•(K0) is induced by the chain
complex C•(K), and therefore we may define a natural inclusion between
corresponding chain vector spaces of the chain complexesC•(K) andC•(K0).
These inclusions, or chain maps, given by fp : Cp(K0) → Cp(K) give
rise to the commutative diagram seen below, which induces inclusions on
the homology groups (resp. vector spaces) of each chain complex. We
summarize this idea with the following lemma.

0 Cn(K0) Cn−1(K0) . . . C0(K0) 0

0 Cn(K) Cn−1(K) . . . C0(K) 0

∂n+1 ∂n

fn

∂n−1

fn−1

∂1 ∂0

f0

∂n+1 ∂n ∂n−1 ∂1 ∂0

Lemma 1. The chain map fp induces the homomorhpishm (resp. linear transfor-
mation) f∗p : Hp(K0)→ Hp(K) on homology groups (resp. vector spaces).

In order to describe the homology ofK/K0, we need to first understand
what it means for a chain to be a cycle or a boundary in K/K0.

Definition 2. A Relative p-Cycle is any p-chain α ∈ Cp(K) such that ∂p(α) ∈
Cp−1(K0).

In absolute homology, we interpret any chain α ∈ Cp(K) to be a p-cycle
if and only if ∂p(α) is trivial. Similarly, any chain σ ∈ Cp(K) is a relative p-
cycle if and only if ∂p(σ) ∈ Cp−1(K0), where we take the chains in Cp−1(K0)

to be trivial. This idea is illustrated in Figure 2.3 below, where the boundary
of the 1-chain which spans the width of K are the two 0-simplices in the
subspace K0. An equivalent interpretation of Definition 2 is that any chain
in the coset c+ Cp(K0) is a relative cycle if and only if ∂p(c) ∈ Cp−1(K0). A

Persistent Relative Homology 9

nice consequence of this definition is that any absolute p-chain α ∈ Ker(∂p)
must also be a relative cycle since ∂p(α) = 0⃗ and 0⃗ ∈ Cp(K0) trivially.

Figure 2.3 Simplicial complexes K0 ⊆ K (left) and the quotient space
K/K0 (right) forming a relative 1-chain.

Definition 3. A Relative p-Boundary is any relative p-cycle α = ∂p+1(β) + γ for
some β ∈ Cp+1(K) and γ ∈ Cp(K0).

In words, if a relative p-cycle α differs from an absolute p-boundary
∂p+1(β) by some (possibly trivial) p-chain γ ∈ Cp(K0), then α must also
be a relative p-boundary. This idea is illustrated below in Figure 2.4. To
make the example more explicit, call the red 1-simplex γ and the adjacent
2-simplex β. Now let α ∈ C1(K) be given by α = ∂2(β) + γ. Further, we
know that ∂1(∂2(β)) is trivial by the definition of a chain complex. Thus

∂1(α) = ∂1(∂2(β)) + ∂1(γ) = ∂1(γ) ∈ C0(K0).

Equivalently, α is a relative 1-cycle that is also a relative 1-boundary by
Definition 3. As one might expect, the relative homology groupHp(K,K0)

is the quotient group or vector space which describes the difference between
all relative p-cycles and relative p-cycles which are also the boundary of a
relative (p+ 1)-chain.

Figure 2.4 Simplicial complexes K0 ⊆ K (left) and the quotient space
K/K0 (right) forming a relative 1-boundary.

To extend relative homology into persistence, we must place N -level
filtrations F• and G• respectively on the simplicial complexes K and K0

such that GtK0 ⊆ FtK for all t ∈ {1, . . . , N}, as seen below in Figure 2.5. In

10 Background

the case that this condition is satisfied, then the quotient vector spaces given
byHp(FtK,GtK0) for any p ∈ {0, . . . , n} and any t ∈ {1, . . . , N}describe the
persistent homology ofK moduloK0. This is persistent relative homology.

Figure 2.5 A filtered simplicial complexK and a filtered simplcial com-
plex K0 (in red) satisfying that GtK0 ⊂ FtK for any t.

Suppose we write K and K0 as the pair (K,K0) and introduce the
pair of simplicial complexes (L,L0) such that L0 ⊆ L, K0 ⊆ L0 and
K ⊆ L. In this setting, there is a natural inclusion of spaces K ↪→ L

which also maps K0 ↪→ L0. In fact, this gives rise to the chain map
gp : Cp(K,K0) → Cp(L,L0). Therefore, Lemma 1 has an equivalent for-
mulation and accompanying commutative diagram in terms of relative ho-
mology [11].

0 Cn(K,K0) . . . C0(K,K0) 0

0 Cn(L,L0) . . . C0(L,L0) 0

∂n+1 ∂n

gn

∂1 ∂0

g0

∂n+1 ∂n ∂1 ∂0

Lemma 2. The chain map gp induces the homomorphism (resp. linear transfor-
mation) g∗p : Hp(K,K0) → Hp(L,L0) on relative homology groups (resp. vector
spaces).

By this fact, a filtration of the quotient space K/K0 will give rise to
induced homomorphisms of the form

g∗p : Hp(Ft(K), Gt(K0))→ Hp(Ft+ε(K), Gt+ε(K0)),

where ε ≥ 0. Lemma 2 allows us to better understand the structure of PRH,
and will later be useful in guaranteeing the stability of algorithms used for
its computation.

1.2 Previous Work

In [13], Morozov presents an algorithm for persistent relative homology
based on the standard matrix reductionR = DV . This algorithm is cubic in

Persistent Relative Homology 11

the number of simplices, and assumes there are two simplicial complexes
K0 ⊆ K with an injective function f : K → R whose sublevel sets are
subcomplexes of K along with an injective function g given by a restriction
of f to K0 whose sublevel sets are subcomplexes of K0. The algorithm
proceeds with two reductions to give

Rf = DfVf Rg = DgVg

where Df is the boundary matrix of K whose rows and columns are or-
dered by f , and Dg is the boundary matrix of K0 whose rows and columns
are ordered by g. At a high level, the algorithm continues by constructing
matricesDim,Dker andDcok by permuting rows and/or replacing columns
of Df . Reductions on each of these three matrices are performed, allow-
ing for the construction of persistence diagrams corresponding to nested
sequences of images, kernels and cokernels.

The algorithm we present shares similar features, but a few key dif-
ferences. First, the assumption that g is a restriction of f to K0 implicitly
assumes that any simplex which is a member of K0 at the terminating step
of the filtration must be a member of K0 as soon as it is born in K. Our
algorithm will not assume this is the case. Second, our algorithm will only
require two reduction steps rather than five. Third, while we do priori-
tize information in the subcomplexK0 by reordering rows of the boundary
matrix, this step is only performed once.

A related and important computation is (persistent) local homology,
which is a special case of relative homology where the subspace that we
quotient is one single point or simplex. Morozov’s work in [13] also de-
scribes this problem. More recently, Kerber and Söls introduced the localized
bifiltration [14] where data is filtered by scale and a second filtration param-
eter describes the locality of the scale filtration about a single point in the
data. In [15], the authors describe the local homology of abstract simplicial
complexes with applications in the analysis of graphs and hypergraphs.
In [16], the authors present a theoretical framework for the identification
of critical nodes or bottlenecks in a network which replaces computational
expensive graph algorithms with a local homology approach. This pre-
vious work in persistent relative and local homology is largely theoretical
with a few instances where implementations or applications are explored,
suggesting the need for an efficient and flexible method of computation.

12 Background

2 The U-Match Decomposition

The algorithm which we present and prove in the following chapter is an
extension of the U-Match Decomposition introduced in [8]. It is therefore
essential to understand how and why the U-Match works. This section
provides a concise description of the standard U-Match algorithm and the
statement of a few lemmas which will be essential for ensuring the correct-
ness of the algorithm we present in the following chapter. We close this
section with two brief discussions about the U-Match which are useful for
our purpose. First, a description of the U-Match as it relates to persistent
homology. Second, a point of view in which the U-Match acts as a change
of basis from the standard simplex basis of a simplicial complex to certain
bases of chains.

Definition 4. A U-Match Decomposition is a tuple of matrices (T ,M,D,S)
which satisfy the following three conditions:

• TM = DS.

• M is a matching matrix.

• T and S are both upper-triangular and invertible.

By abuse of notation, we will refer to a U-Match decomposition simply as TM =
DS.

In our case, we always consider the matrix D to be the block boundary
matrix of a chain complex given by

D =


0 ∂1

0 ∂2
.

0 ∂n
0

 .

The matching matrix M is the reduced form of D. It has coefficients from
the field Z2 and contains at most one nonzero entry per row and column.
The matrix T , or the target matrix, contains information about the image
of D. The matrix S , or the source matrix, contains information about the
kernel ofD. There are a number of methods to compute a U-Match, but one
method is as follows. The reduction of D to M proceeds bottom to top and
left to right, using T −1 to record row operations and S to record column

The U-Match Decomposition 13

operations as seen below. We call T and S Columnar Ordered Matching
Bases, or COMBs. (

D In
Im 0

)
7→

(
M T −1

S 0

)
The notationKn×m denotes the set of n×mmatrices with coefficients in

the fieldK. Let COLI(D) denote columns of D ∈ Kn×m indexed by the set
I ⊆ {1, . . . ,m} and similarly define ROWJ(D) for J ⊆ {1, . . . , n}. Using
this notation, the following from [8] describes an efficient implementation
of the U-Match Decomposition.

Algorithm 1 U-Match Matrix Decomposition
Require: Matrix D ∈ Kn×m.
Ensure: Upper uni-triangular matrices T −1 ∈ Km×m,S−1 ∈ Kn×n and

matching matrix M ∈ Zm×n
2 such that T −1D = MS−1. The corre-

sponding U-match decomposition is TM = DS.
1: T −1 ← Im×m, S−1 ← In×n, M ← 0m×n

2: for i← m to 1 do
3: while ∃j ∈ {i + 1, . . . ,m} and k ∈ {1, . . . , n} such that ROWi(D)

and ROWj(D) both have leading nonzero entries in column k do
4: ROWi(D)← ROWi(D)− D[i,k]

D[j,k]ROWj(D)

5: ROWi(T −1)← ROWi(T −1)− D[i,k]
D[j,k]ROWj(T −1)

6: end while
7: end for
8: for i← 1 to m do
9: if for some k, D[i, k] is the leading entry of ROWi(D) then

10: ROWk(S−1)← 1
D[i,k]ROWi(D)

11: M [i, k]← D[i, k]

12: end if
13: end for

Algorithm 1 can be applied more generally and not just in the case where
D is square or a boundary matrix. The while loop at line 3 reduces the rows
ofD by locating pivots from the bottom of the matrix. These operations are
recorded in T −1, which is upper-triangular and invertible by construction
since it is initialized as the identity and constructed with bottom to top
linear combinations of its rows. The for loop at line 8 constructs S−1 row-
by-row. Each iteration of this loop identifies the column index, k, which

14 Background

contains the leading entry in the ith row ofM . This entry must be the pivot
which is recorded in the matching matrix M since the column reduction
of D proceeds left to right. Thus, M [i, k] ̸= 0. Therefore ROWi(MS−1) =

ROWi(M)S−1 = M [i, k]ROWk(S−1) = D[i, k](S−1). So T −1D = MS−1

giving TM = DS as required. A more detailed proof of correctness and
a memory efficient clear and compress implementation of Algorithm 1 is
contained in [8].

In the case that D is the boundary matrix of a chain complex, then D is
square and D2 = 0, which is equivalent to the statement that ∂p−1∂p = 0

for any p ∈ {1, . . . , n}. Let r• and c• be sets which denote, respectively, the
indices of nonzero rows and indices of nonzero columns in the matching
matrixM of the U-Match TM =DS. With this notation and the assumption
that D2 = 0, we have the following lemma regarding the structure of M .

Lemma 3. The sets r• and c• are disjoint. Thus, r• ⊆ c•, where c• are the indices
of zero columns in M .

Proof. Given the U-Match TM = DS, we see that S−1TM = S−1DS. But
D2 = 0 ⇒ (S−1DS)2 = 0 ⇒ (S−1TM)2 = 0. But S−1T is invertible and
upper-triangular and M is a matching matrix, therefore implying that the
nonzero columns of S−1TM form a linearly independent set. Furthermore,
since we know (S−1TM)2 = 0, then it follows that for any row ri and any
column cj in S−1TM , the dot product ri · cj = 0. This holds for the case i =
j, therefore implying that the following sets are disjoint:

R := {i : row i of S−1TM is nonzero}
C := {j : column j of S−1TM is nonzero}

Since S−1T is invertible and M is a matching matrix, it follows that the set
C is precisely the set c•, and the set R is precisely the set r•. This concludes
the proof.

It is important to note that the assumption thatD2 = 0 is necessary, and
thus Lemma 3 holds only for this particular class of U-Match Decompo-
sitions. We include the statement of this lemma as it gives the following
corollaries which imply that the U-Match Decomposition may be used to
compute homology.

Corollary 3.1. COLr•(T) is a basis for Im(D).

The U-Match Decomposition 15

Proof. Suppose that COLj(TM) ̸= 0⃗, then we must have COLj(DS) ̸= 0⃗.
Additionally, by properties of matrix multiplication it must be true that

COLj(TM) = COLj(DS)
T · COLj(M) = D · COLj(S).

Consider the right-hand side (RHS) first. Since D is a boundary matrix
and the columns of S contain a chain basis for some simplicial complex
K, then the RHS asserts that COLj(TM) must be the boundary of some
chain in K. Equivalently, COLj(TM) ∈ Im(D) when COLj(TM) ̸= 0⃗.
Now consider the left-hand side (LHS). Since M is a matching matrix and
T · COLj(M) ̸= 0⃗, then COLj(M) must contain exactly one nonzero entry
mij occurring in (wlog) row i. In other words,

COLj(TM) = T · COLj(M) = COLi(T) ·M = mijCOLi(T).

Since i ∈ r• and COLj(TM) ∈ Im(D), this concludes the proof.

Corollary 3.2. COLc•(S) is a basis for Ker(D).

Proof. Consider the column vector COLj(DS). Again, by properties of
matrix multiplication we must have COLj(DS) = D ·COLj(S). Since D is
a boundary matrix and COLj(S) is just some chain in a simplicial complex
K, then we want to show that j ∈ c• ⇒ D · COLj(S) = 0. Again, we note
that T · COLj(M) = D · COLj(S). But since j ∈ c• then

T · COLj(M) = T · 0⃗ = 0⃗,

which concludes the proof.

These corollaries along with the fact that r• ⊆ c• imply that rank(D) ≤
nullity(D), which we should expect given thatD is the boundary matrix of
a chain complex. In fact, we may actually strengthen this statement further
to show that the U-Match Decomposition can indeed be used to compute
homology.

Theorem 4. Given a U-Match TM = DS satisfying that D2 = 0, Im(D) ⊆
Ker(D).

The U-Match Decomposition can also compute persistent homology.
Given a filtered simplicial complex K, index rows and columns of D by
simplices in K with increasing filtration value in F•K as column and row

16 Background

indices increase. After performing a U-Match, this ordering is carried over
to T −1 and S since they are initialized as identity matrices and respectively
constructed with bottom-to-top linear combinations of rows and left-to-
right linear combinations of columns. Thus, the rows of T and S are
indexed by simplices in K according to increasing filtration value in F•K,
whereas their columns contain chains recorded during the reduction of D
which are ordered by increasing filtration value in F•K. This is illustrated
below, and discussed further in the following chapter.


c ∈ F•K

s ∈ F•K T

 
c ∈ F•K

c ∈ F•K M




s ∈ F•K

s ∈ F•K D

 
c ∈ F•K

s ∈ F•K S


Figure 2.6 Matrices of a U-Match TM = DS where s ∈ F•K and c ∈
F•K respectively denote simplices and chains ordered byF•K. Filtration
value increases with increasing row and column index.

Let VK (resp. VK0) be the vector space which spans all chains in the
simplicial complex K (resp. K0). Then D is a linear transformation of the
form D : VK → VK (resp. D0 : VK0 → VK0) mapping chains expressed in a
simplex basis to their boundary expressed in a simplex basis. The simplex
basis is analogous to the idea of the standard basis, and we denote it as
BS . Further, since the reduction of D records row operations in T −1, then
the chains which index the columns of T must span VK . We refer to this
chain basis as the row operation basis denoted BR. Thus, T : VK → VK
may be considered as a change of basis matrix, taking chains expressed in
terms of BR to chains expressed in terms of BS . Similarly, the columns of S
must contain a column operation basis, which we denote BC . We use the
notation VK and VK0 as well as this change of basis point of view extensively
in the following chapter.

3. An Algorithm for PRH
In this chapter, we provide pseudocode and proofs of correctness for an
algorithm for persistent relative homology, which consists of a few general
steps. First, a relative boundary matrix D is constructed via a permutation
of rows of the block boundary matrix D. Second, D is reduced to give the
U-Match TM = DS, and columns of the COMBs are permuted to give a
filtration of relative cycles and relative boundaries. Third, a second U-Match
is performed to construct a single matrix whose columns contain a filtered
basis for the relative cycles and relative boundaries. We refer to such bases
as being matched. We state a number of lemmas throughout this chapter
which will be used to prove the correctness of this algorithm.

1 Constructing the Boundary Matrix

Our starting point for the algorithm is the block boundary matrix of a sim-
plicial complex K equipped with an N -level filtration F•K. As mentioned
in Section 2.2, the rows of D are indexed by the simplices in K and ordered
top-to-bottom by increasing filtration value in F•K. The columns of D are
ordered similarly left-to-right. Importantly, we also assume there exists
some subcomplex K0 ⊆ K identically equipped with an N -level filtration
such that GtK0 ⊆ FtK for any t ∈ {1, . . . , N}. To construct the relative
boundary matrix D, permute rows of D to be indexed from top-to-bottom
by simplices in K0 by increasing filtration value in G•K0 followed by sim-
plices in K \K0 ordered by increasing filtration value in F•K. We say that
the rows of D respect the filtration G•K0, while the columns of D respect
the filtration F•K. This step is illustrated below in Figure 3.1.

To motivate why this step is necessary, recallCp(K,K0)partitionsCp(K)

into cosets of the form c + Cp(K0) where c is any p-chain in K. Since the
U-Match reduces D with bottom-to-top linear combinations of rows, then
these linear combinations will record relative chains in the rows of T −1.
This idea is exemplified in Figure 3.1, where the rows in blue are indexed by
the simplices corresponding to the equivalence classes {[c]}, and the rows
in red are indexed by a simplex basis for VK0 . This step will be rather useful
when proving the correctness of subsequent and less-trivial steps of the
algorithm.

For the sake of implementation, it is important to describe how the

18 An Algorithm for PRH




7→




Figure 3.1 The rows of a block boundary matrix before (left) and after
(right) the permutation to construct the relative boundary matrix. The
rows highlighted in red are simplices in K0, and the rows in blue are
simplices in K \K0.

matrixDmay be constructed from point cloud data, as this step is necessary
to then constructD. Assume that the point cloud data is stored in a distance
matrix M1, and some subset of this data is also stored in a distance matrix
M2. Note thatM2 should be the same size asM1, using zero entires for data
which is not contained in the subspace. In fact, these matrices implicitly
contain information about how to construct a Vietoris-Rips (VR) complex.
For example, suppose that the points {x1, x2, . . . , xp+1} which index some
subset of the rows and columns of M1 satisfy that d(xi, xj) < εt for any
i, j ∈ {1, . . . , p + 1}. In words, we say that these points are pairwise-close
within εt. Now, use these points to form a p-simplex σ with diameter εt and
filtration value t. We write diam(σ) to denote the diameter ofσ. To construct
the filtered simplicial complex F•K, then use a scale parameter given by
ε1 ≤ ε2 ≤ · · · ≤ εN . In particular, this means that the simplicial complex
FtK should contain all simplicies constructed from sets of points which are
pairwise-close within εt. The same process can be used to construct a VR
complex fromM2, thus giving the filtered subcomplexG•K0. However, we
must take care to ensure that this method constructs each VR complex such
that GtK0 ⊆ FtK. Suppose that δ1 ≤ δ2 ≤ · · · ≤ δN is the scale parameter
used to construct a VR complex from M2. Then the required property will
be satisfied if and only if δt ≤ εt for each t ∈ {1, . . . , N}, where we assume
that both areN -level filtrations. In addition, since it may be true that δt < εt,
then we do not assume that any simplex in K0 enters the filtration G•K0

immediately upon birth in F•K.
Importantly, each simplex constructed by the above method will be

Constructing the Boundary Matrix 19

assigned a filtration value (birth) and a diameter. In general, if σ and τ are
simplices in a VR complex where b(σ) = t1 and b(τ) = t2, then diam(σ) <

diam(τ) if and only if t1 < t2. In other words, either of these measures can
be used to permute the rows ofD as needed. A block boundary matrix may
be stored explicitly or as a sparse matrix, although most applications will
require sparse matrix formats due to the tendency of boundary matrices to
be exceedingly large for any practical application. In either case, all that is
needed to constructD is a filtered list of simplices inK, which we denoteF .
Similarly, all that is needed to construct D is the list F and a filtered list of
simplices in K0, which we denote G. Therefore, the list of simplices which
index the rows of the relative boundary matrix D may then be constructed
with a simple sorting algorithm which uses an order operator to compare
any two simplices in F , as seen below.

Algorithm 2 Relative Boundary Matrix Row Order Operator
Require: Two simplices σ, τ ∈ F .
Ensure: True if σ before τ , and false otherwise.

1: if σ ∈ G and τ /∈ G then
2: Return True
3: end if
4: if σ /∈ G and τ ∈ G then
5: Return False
6: end if
7: if σ, τ ∈ G then
8: Return bG(σ) < bG(τ)

9: end if
10: if σ, τ /∈ G then
11: Return bF (σ) < bF (τ)

12: end if

Lemma 5 (Relative Boundary Matrix). Algorithm 2 correctly orders any two
simplices σ, τ ∈ F given a filtered list G.

Proof. We require that any simplex in K0 appear before any simplex in
K\K0, regardless of diameter or filtration value. Lines 1 and 4 above handle
these cases. In the case that σ, τ ∈ K0 then ordering must be determined by
comparing bG(σ) and bG(τ). This case is handled at line 7 above. In the case
that σ, τ ∈ K \K0 then ordering must be determined by comparing bF (σ)

20 An Algorithm for PRH

and bF (τ). This is handled similarly to the previous case, as seen above at
line 10.

2 Decomposition and Permuting COMBs

Now that we have a relative boundary matrix, we can perform a U-Match
Decomposition using Algorithm 1 to obtain TM = DS.


c ∈ G•K0

s ∈ G•K0 T

 
c ∈ F•K

c ∈ G•K0 M




s ∈ F•K

s ∈ G•K0 D

 
c ∈ F•K

s ∈ F•K S


Figure 3.2 The matrices of a U-Match TM = DS. The notation s ∈ F•K
and c ∈ F•K have the same meaning as in Figure 2.6, while s ∈ G•K0

and c ∈ G•K0 respectively denote simplices and chains which respect
the filtration G•K0.

Since we are using the matrix D for this U-Match Decomposition, there
are a few key differences when compared to the U-Match TM = DS , as
Figure 3.2 suggests. Most importantly, since the rows of D respect the
filtration G•K0, this ordering is carried over to the rows and columns of T
and the rows of M . This idea is formalized with the following proposition.

Proposition 1. Suppose that VK0 is a vector space with dimension i spanning all
chains in K0. Then, the first i columns of T from the U-Match TM = DS are a
basis which spans VK0 .

Proof. Let I be the set {1, ..., i}. By the construction ofD and the properties of
Algorithm 1, the row operation matrix T −1 is a linear transformation VK →
VK taking chains in the basis BS to chains in the basis BR. Equivalently,
the construction of D necessarily forces the bases which index the rows
and columns of T −1 to inherit the ordering placed on the rows of D. This
implies that T : VK → VK maps chains in the basis BR to chains in the

Decomposition and Permuting COMBs 21

basis BS . In particular, the columns of T inherit an ordering given by the
filtered basis BR. Furthermore, since ROWI(D) spans VK0 by construction
and T −1 is constructed with bottom to top linear combinations of its rows,
then ROWI(T −1) must span VK0 . Therefore, COLI(T) must span VK0 as
well, which completes the proof.

With this in mind, we are now ready to prove that this modified U-
Match can compute relative homology. For the proof, we use the previously
introduced notation VK (resp. VK0) to denote the vector space which spans
all chains in the simplicial complex K (resp. K0).

Lemma 6 (Containment). Suppose a U-Match TM = DS. Then

(i.) the columns of S contain a basis for the relative cycles denoted RelKer(D).

(ii.) the columns ofT contain a basis for the relative boundaries denoted RelIm(D).

Proof. (i.) By Definition 2, a relative p-cycle is any α ∈ Cp(K) such that
∂p(α) ∈ Cp−1(K0). Equivalently, we may also write this in terms of the
matrix D as α ∈ VK such that Dα ∈ VK0 . Suppose that α ∈ VK satisfies this
property. There are two cases to consider:

Case 1: Since 0⃗ ∈ VK0 trivially, then any α which is an absolute cycle
is also a relative cycle. By Corollary 3.2, the columns of S given by
COLc•(S) give a basis for Ker(D).

Case 2: We now show that columns of S contain a basis for any α

which are relative cycles but not also absolute cycles. Equivalently,
any α which satisfy Dα ∈ VK0 is nontrivial. Let I = {1, . . . , i}. Recall
by Proposition 1 that if VK0 has dimension i, then COLI(T) spans
VK0 . Thus, COLI(T) contains all boundaries of relative cycles in its
span.

Case 2a: Let k ∈ r• and k ∈ I . Then, by Corollary 3.1, the chain
COLk(T) ∈ VK0 is also an absolute boundary and there exits
c ∈ c• such that

COLk(T) = COLc(TM) = COLc(DS) = D · COLc(S) = Dα.

In words, α = COLc(S) is a chain which is not an absolute cycle
and has a boundary in VK0 .

22 An Algorithm for PRH

Case 2b: Let k ∈ r• and k ∈ I and suppose for contradiction
that α = COLj(S) satisfies that Dα = COLk(T) for some j.
Therefore, we must have

Dα = COLj(DS) = COLj(TM) = COLk(T).

But for this to hold, we must have k ∈ r•, which is a contradiction.

Cases 2a and 2b establish that any β ∈ VK0 with β ̸= 0⃗ which satisfies
Dα = β for some α ∈ VK must also satisfy that α is contained within
the span of the columns of S.

Proof. (ii.) By Definition 3, any relative p-boundary may be written as
α = ∂p+1(β) + γ where β ∈ Cp+1(K) and γ ∈ Cp(K0). When considering
any p ≤ dim(K), we see that a basis for RelIm(D) can be given by a basis
for Im(D) together with a basis for VK0 . If VK0 has dimension i, then it is
immediate by Corollary 3.1 and Proposition 1 that

RelIm(D) = COLr•(T) ∪ COLI(T).

Lemma 6 establishes that our method is capable of computing relative
homology in a few simple steps, but is not always useful for identifying the
exact columns which constitute RelKer(D) and RelIm(D). Furthermore, it
does not describe if or how we may assign a filtration value to these relative
features. The rest of this section addresses these issues by extending our
algorithm with methods that determine if and when any column of S (resp.
T) is born as a relative cycle (resp. boundary) throughout a filtration. Before
proceeding, recall that the notation bF (α) is used to denote the birth of a
chain α in the filtration F•. On the other hand, when we use the notation
b(α)we are referring explicitly to the birth of either a relative cycle or relative
boundary. In this case, we do not distinguish birth according to filtration as
we assume that the filtrations F•K andG•K0 are bothN -level, as described
in the previous section. We consider the case of relative cycles first.

Decomposition and Permuting COMBs 23

Algorithm 3 Test Relative Cycle Birth
Require: A positive integer c which is a column index in M that corre-

sponds to the column of S given by α = COLc(S).
Ensure: Some a ∈ [0,∞) describing the birth of α as a relative cycle.

1: m← COLc(M)

2: x← bG(m)

3: y ← bF (α)

4: a← max(x, y)

Algorithm 3 is simple and is based on the fact that any chainαwhich is a
relative cycle must satisfy that α has been born in the filtration F•K, andDα
has been born in the filtration G•K0. This follows directly from Definition
2. The former is checked on line 3, while the latter is checked on line 2.
This pseudocode mirrors what an implementation of the algorithm might
look like, where data structures describing the filtrations F•K and G•K0

have been defined. We now provide a proof of correctness for Algorithm 3
which elucidates some of the finer details.

Lemma 7 (Relative Cycle Filtration). Given a column vector α = COLc(S)
where c is a column index in M , then Algorithm 3 assigns a filtration value at
which α is born as a relative cycle.

Proof. Let α = COLc(S), where c is some column index of M . Note that
the birth of Dα corresponds to the birth of m = COLc(M) as follows

Dα = D · COLc(S) = COLc(DS) = COLc(TM) = T · COLc(M).

With this, there are a few simple cases to check.

Case 1: Suppose α is not a relative cycle. It is trivial thatm /∈ VK0 and
thus x = ∞. However, since b(α) = max(x, y), then we must have
b(α) = ∞, implying that Algorithm 3 does not assign a birth to α as
required.

Case 2: Suppose α is a relative cycle but not an absolute cycle. There-
fore we must have m ̸= 0⃗ and m ∈ VK0 , implying that x > 0 is finite.
But since y > 0 must also be finite then b(α) = max(x, y) is finite as
required.

Case 3: Suppose α is an absolute cycle. Then c ∈ c• by Corollary 3.2
and m = 0⃗⇒ x = 0. But since y > 0 then b(α) = y. Finally, since y is

24 An Algorithm for PRH

finite then Algorithm 3 assigns b(α) to be the time step at which α is
born as required.

Now we turn our attention to the case of relative boundaries. The pesu-
docode provided for this case is slightly less trivial than the previous, but
the proof is no more difficult. Once again, we rely on a simple observation
regarding the definition of a relative boundary. In particular, that any rela-
tive chain α ∈ K/K0 will be born as a relative boundary once α ∈ Im(D) or
once α ∈ VK0 .

Algorithm 4 Test Relative Boundary Birth
Require: A positive integer r which is a row index in M that corresponds

to the column of T given by α = COLr(T).
Ensure: Some a ∈ [0,∞) describing the birth of α as a relative boundary.

1: x← bG(α)

2: mr ← ROWr(M)

3: if r ∈ r• then
4: c← index of nonzero entry in mr

5: mc ← COLc(M)

6: y ← bF (mc)

7: end if
8: if r ∈ r• then
9: y ←∞

10: end if
11: a← min(x, y)

Lemma 8 (Relative Boundary Filtration). Given a column vectorα = COLr(T)
where r corresponds to a row index in M , then Algorithm 4 assigns a filtration
value at which α is born as a relative boundary.

Proof. Algorithm 4 relies on the simple observation that

RelIm(D) = Im(D) ∪ VK0 .

Suppose that α = COLr(T), where r corresponds to the index of a row in
the matching matrix M . There are a few simple cases to check.

Case 1: Suppose α is not a relative boundary. By Definition 3, we
must have α /∈ VK0 ⇒ x = ∞. Furthermore, Corollary 3.1 implies
that r ∈ r• ⇒ y =∞. Therefore b(α) = min(x, y) =∞ as required.

Decomposition and Permuting COMBs 25

Case 2: Suppose α is a relative boundary but not an absolute bound-
ary. By Definition 3, we must have α ∈ VK0 where α ̸= 0⃗. This implies
x > 0 is finite. Once again, Corollary 3.1 implies y = ∞. Therefore,
we have b(α) = x, as required.

Case 3: Suppose thatα is an absolute boundary. In this case, Corollary
3.1 implies r ∈ r•. Consider the nonzero row ofM which corresponds
to α, given by mr = ROWr(M). Suppose, WLOG, that the nonzero
entry inmr occurs at column index c. Now considermc = COLc(M).
Since mc ̸= 0⃗ we have

COLr(T) = COLc(TM) = T ·mc = D · COLc(S).

Let β = COLc(S). In fact, we have just shown that α is the boundary
of β and that bF (β) corresponds to bF (mc). Since the boundary of
a chain must be born when that chain is born, then we must have
b(α) = bF (β). This equality implies x = y when we have β ∈ VK0 . In
the case that β /∈ VK0 , then α /∈ VK0 ⇒ x = ∞. In either case, we see
that when α is an absolute boundary, we have b(α) = y as required.

When applying Algorithm 1 to a relative boundary matrix D which
has been constructed from the filtered quotient space K/K0, Lemma 6
implies that the resulting U-Match TM = DS contains information about
the homology of K/K0. Combining this result with Algorithms 3 and
4, we may translate this into PRH by simply permuting the columns of
the COMBs. Specifically, permute the columns of T such that relative
boundaries appear in increasing birth order as column index increases.
Append any column which is not a relative boundary to the end, and call
this permuted matrix A. Permute the columns of S similarly to obtain a
matrix B. Similar to the construction of D, this becomes a matter of writing
a simple sorting algorithm using Algorithm 3 or Algorithm 4 as an order
operator. There is only one issue left, namely that the columns of T are
in the basis BR and the columns of S are in the basis BC . It would be
computationally simple to express the columns of T and S such that a
basis for RelIm(D) is a subset of a basis for RelKer(D), allowing for simple
extraction of homological generators. As noted earlier, we call such bases
in this form matched. This final step is addressed in the following section.

26 An Algorithm for PRH

3 Matching Bases

We are nearly ready to state the U-Match PRH algorithm in full. To this
end, we present one final lemma regarding the properties of the U-Match
Decomposition. In fact, the correctness of the final step of the algorithm is
an immediate consequence of this lemma. Throughout this section, we use
I to denote the set {1, . . . , i} and similarly use J to denote the set {1, . . . , j}.
Also, note that the filtrations F• and G• which are introduced in Lemma 9
do not correspond to our filtered simplicial complexes F•K and G•K0.

Lemma 9 (Basis Matching). Let A ∈ Kn×n be invertible with B being a not
necessarily square or invertible matrix. Thus B ∈ Kn×m and we allow that
m = n. In both cases, the matrix multiplication A−1B is compatible. Further, let
F• be a filtration of the vector space Km such that FiKm describes the span of the
first i columns of A. Similarly define G• for the columns of B. In the case that the
columns ofB do not spanKm, then letGm+1 = K

m to ensure that the filtration on
the columns of B terminates. Let D = A−1B for a U-Match TM = DS . Then
the columns of AT contain a basis for each Fi and Gj where i, j ∈ {1, . . . ,m}.

Proof. This rather bulky theorem has a concise proof. First, note that
Im(AT) = Im(A) since T is invertible by definition. In fact, since T
is also upper-triangular, then each Fi is spanned by COLI(AT). On the
other hand, consider the U-Match TM = DS . It follows that

TM = DS

TM = (A−1B)S

ATM = BS

⇒ Im(ATM) = Im(BS).

Since S is upper-triangular and invertible, then each Gj is spanned by
COLJ(ATM). Now, sinceM is a matching matrix, then the multiplication
ATM simply acts to permute columns of AT . Thus, each Fi is spanned
by some combination of columns in AT , which concludes the proof.

Lemma 9 is a particularly nice property of the U-Match for our purpose,
and implies the final step needed in order to express the permuted COMBs
A and B in a matched form. In fact, it is immediate by Lemma 9 that if
given the U-Match TM = (A−1B)S , then the columns of the matrix AT
must contain a basis for both RelKer(D) and RelIm(D). With this in mind,
we summarize the U-Match PRH algorithm with the following theorem.

Matching Bases 27

Theorem 10 (U-Match PRH). Let K and K0 be simplicial complexes equipped
with finite filtrations F•K and G•K0, and suppose that for any filtration value t
we have GtK0 ⊆ FtK. Apply the following steps:

1. Construct relative boundary matrix D using Algorithm 2.

2. Apply Algorithm 1 to obtain a U-Match decomposition TM = DS.

3. Use Algorithms 3 and 4 to obtain the permuted COMBsA andB respectively
from T and S.

4. Apply Algorithm 1 to obtain a U-Match Decomposition TM = (A−1B)S .

Suppose RelIm(D) has dimension i and RelKer(D) has dimension j at filtration
value t. If the above steps are applied, then the set

COLJ(ATM) \ COLI(AT)

contains a basis for Hp(FtK,GtK0) for each p < dim(K).

We have already done all of the work necessary to prove Theorem 10.
By construction of D and Lemmas 6, 7 and 8, matrices A and B must
contain filtered bases for RelIm(D) and RelKer(D) at any filtration value. As
previously noted, Lemma 9 implies that step 4 will give one single matrix
AT whose columns give a matched basis for RelKer(D) and RelIm(D).
Finally, note thatMmust be a permutation matrix since A−1B is full-rank.
Thus, the right multiplication of AT byM can be seen as a permutation
between versions of AT which is either ideal for extracting relative cycles
or ideal for extracting relative boundaries.

4. Stability
In this chapter, we provide a theorem guaranteeing the stability of the U-
Match PRH algorithm. In fact, this result is derived from a more general
notion of the stability of persistence modules arising from filtered quotient
spaces. We start by recalling a few key definitions and previous results.

1 Persistence Modules and the Isometry Theorem

Persistence modules describe the theoretical and structural foundation of
persistent homology and are often essential when providing results which
guarantee the stability of persistence algorithms. It is beyond the scope of
this text to give a detailed account of the literature, and thus we provide the
details essential to this work, namely a definition of the persistence module
and a pseudometric on persistence modules known as the interleaving
distance. For the reader who is not familiar with these topics we recommend
[17] and [9] as an introduction.

Definition 5. A persistence moduleM defined over some indexing poset (A,≤) ⊂
R is a collection ofR-modules {Ma}a∈A along with a collection of homomorphisms
ma,a′ : Ma → Ma′ such that ma,a is the identity and ma′,a′′ ◦ma,a′ = ma,a′′ for
a ≤ a′ ≤ a′′.

It will be convenient to take the R-modules Ma to be vector spaces
Va with coefficients from a field R, and the homomorphisms to be linear
transformations va,a′ : Va → Va′ . Although originally defined in [3] as
a graded module over a polynomial ring, this definition from [9] allows
us to more explicitly associate the sequence of R-modules {Ma}a∈A with
a sequence of homology vector spaces related by a collection of induced
homomorphisms on homology. Persistence modules provide a means of
understanding the algebraic structure of persistent homology and are a key
theoretical tool for computational topology and TDA.

The first result ensuring the stability of persistence algorithms is due
to [17], in which the authors provide a metric on persistence diagrams
known as the bottleneck distance, dB . Let X be a triangulable topological
space and define functions f, g : X → R which give rise to the persistence

30 Stability

diagrams D(f) and D(g). The bottleneck distance is given by

dB(D(f), D(g)) = inf
γ
sup
x
||x− γ(x)||∞,

where x ranges over all x ∈ D(f) and likewise γ ranges over all bĳections
of the form γ : D(f) → D(g). In words, we choose the bĳection between
the persistence diagrams which minimizes the maximal distance between
corresponding points under the bĳection. The key stability result in [17] is
that

dH(D(f), D(g)) ≤ dB(D(f), D(g)) ≤ ||f − g||∞

where dH is the Hausdorff distance. Thus, the bottleneck distance ensures
that small changes in the filtration functions imply small changes in the
persistence diagram.

For ensuring the stability of our algorithm, we will use the interleaving
distance dI , which is a pseudometric on the category of persistence modules
arising from n-dimensional filtrations. To define the interleaving distance
we must first describe an ε-interleaving on persistence modules, introduced
in [18]. Suppose that M and N are persistence modules over R. Call
M and N ε-interleaved if there exists two families of homomorphisms
φa : Ma → Na+ε and ψa : Na → Ma+ε which give rise to a commutative
diagram satisfying rectangular and triangular commutability. IfM and N
are given by

M := . . .
ma−ε,a−−−−→Ma

ma,a+ε−−−−→Ma+ε
ma+ε,a+2ε−−−−−−→Ma+2ε

ma+2ε,a+3ε−−−−−−−→ . . .

N := . . .
na−ε,a−−−−→ Na

na,a+ε−−−−→ Na+ε
na+ε,a+2ε−−−−−−→ Na+2ε

na+2ε,a+3ε−−−−−−−→ . . .

then rectangular commutability is satisfied when

na+ε,a′+ε ◦ φa = φa′ ◦ma,a′ and ma+ε,a′+ε ◦ ψa = ψa′ ◦ na,a′

for a ≤ a′ and ε ≥ 0. If such maps exist, then we have the following
commutative diagrams onM and N :

Ma Ma+ε Ma+ε Ma+2ε

Na+ε Na+2ε Na Na+ε

ma,a+ε

φa

φa+ε

ma+ε,a+2ε

na+ε,a+2ε na,a+ε

ψa

ψa+ε

Stability of the U-Match PRH Algorithm 31

On the other hand, triangular commutability is satisfied when

ψa+ε ◦ φa = ma,a+2ε and φa+ε ◦ ψa = na,a+2ε

for a ≤ a′ and ε ≥ 0, giving the commutative diagrams:

Ma Ma+2ε Ma+ε

Na+ϵ Na Na+2ε

φa

ma,a+2ε

φa+ε

ψa+ε

na,a+2ε

ψa

In the case that such maps exist, then the interleaving distance is the infimal
ε such thatM and N are ε-interleaved. Equivalently, we have

dI = inf{ε :M and N are ε-interleaved}.

The interleaving distance will be of use in our case by the Isometry Theorem
due to [19] and [20], which we state here as a lemma.

Lemma 11. Given two q-tame persistence modules M and N defined over the
totally ordered indexing set R,

dI(M,N) = dB(D(M), D(N)),

where D(M) and D(N) are the persistence diagrams forM and N .

By the Isometry Theorem, it is enough to establish an ε-interleaving on
persistence modules to imply bottleneck stability. It is worth noting that in
our case, although the persistence modules are q-tame, they are not defined
over R but rather some poset (A,≤) ⊂ R. This is not an issue, as any
persistence module,M, defined over A can be extended over R as follows:
Suppose a < a′ where (a, a′) is not in A. For any a ≤ b < b′ < a′, assume
that mb,b′ is an isomorphism and that lima→−∞Ma = 0.

2 Stability of the U-Match PRH Algorithm

We conclude this chapter with a theorem which guarantees stability of the
U-Match PRH algorithm. For this argument, we consider general topologi-
cal spaces, and do not assume that they are simplicial complexes.

Theorem 12. Persistence modules arising from filtered quotient spaces satisfy
bottleneck stability.

32 Stability

Proof. Consider two pairs of topological spaces (X,A) and (Y,B) such that
A ⊆ X,B ⊆ Y,X ⊆ Y and A ⊆ B. Furthermore, suppose that we define
filtration functions forX,Y,A,Bwhich preserve the inclusion relationships.
Thus, we have the following inclusions of pairs for any t ∈ R and some ε ≥ 0:

. . . (Xt, At) (Xt+ε, At+ε) . . .

. . . (Yt, Bt) (Yt+ε, Bt+ε) . . .

Applying relative homology, then by Lemma 2 we have the following com-
mutative diagram on persistent relative homology groups:

. . . Hp(Xt, At) Hp(Xt+ε, At+ε) . . .

. . . Hp(Yt, Bt) Hp(Yt+ε, Bt+ε) . . .

This relationship holds for any pth homology. The top row of the diagram
is the persistence moduleMXA for the persistent homology of the filtered
quotient space X/A. Similarly we have MY B on the bottom row. This
commutative diagrams establishes an ε-interleaving on MXA and MY B .
The required result follows by Lemma 11, which concludes the proof.

A proof of this fact can also follow by establishing an ε-interleaving
at the filtration level, which implies an ε-interleaving on the associated
persistence modules. In this case, the proof is slightly less trivial, as an ε-
interleaving on a space (resp. simplicial) filtration must be established via a
family of homotopic (resp. contiguous) maps which satisfy rectangular and
triangular commutability. In our proof, we do assume that the persistence
modules are indexed over R. As previously mentioned, any persistence
module indexed over some poset (A,≤) ⊂ R can be extended over R as
described in the previous section.

5. Conclusion
We have provided an algorithm for computing persistent relative homology
with an eye toward applications in TDA. In fact, since the U-Match PRH
algorithm uses two U-Match Decompositions and two sorting steps, then its
asymptotic complexity is no different than that of the standard persistence
computation. We have demonstrated the correctness of this algorithm using
only elementary linear algebra, properties of the U-Match Decomposition
and basic definitions of algebraic topology. Furthermore, by appealing to
the theory of ε-interleavings of persistence modules, we have argued that
persistence modules arising from filtered quotient spaces satisfy bottleneck
stability, thus implying the stability of the U-Match PRH algorithm. Finally,
it is important to address that this text does not include an implementation.
Future work would be primarily concerned with applying this method to
real data.

Bibliography
[1] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persis-

tence and simplification,” Discrete and Computational Geometry, pp. 511–
533, 2002.

[2] A. J. Zomorodian, Computing and comprehending topology: Peresistence
and hierarchical morse complexes. University of Illinois at Urbana-
Champaign, 2001.

[3] G. Carlsson and A. Zomorodian, “Computing persistent homology,” In
Proceedings of the twentieth annual symposium on Computational geometry,
pp. 347–356, 2004.

[4] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov, “Vines and
vineyards by updating persistence in linear time,” in Proceedings
of the Twenty-Second Annual Symposium on Computational Geometry,
p. 119–126, Association for Computing Machinery, 2006.

[5] H. Edelsbrunner and J. L. Harer, Computational topology: an introduction.
American Mathematical Society, 2022.

[6] C. Chen and M. Kerber, “An output sensitive algorithm for persistent
homology,” In Proceedings of the twenty-seventh annual symposium on
Computational geometry, pp. 207–216, 2011.

[7] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, “Persistence
barcodes for shapes,” In Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium of Geometry processing, pp. 124–135, 2004.

[8] H. Hang, C. Giusti, L. Ziegelmeier, and G. Henselman-Petrusek, “U-
match factorization: sparse homological algebra, lazy cycle represen-
tatives, and dualities in persistent (co)homology,” 2021.

[9] T. K. Dey and Y. Wang, Computational topology for data analysis, ch. 3-4.
Cambridge University Press, 2022.

[10] R. Ghrist, “Barcodes: the persistent topology of data,” Bulletin of the
American Mathematical Society, pp. 61–75, 2008.

[11] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

36 Bibliography

[12] M. D. Crossley, Essential Topology. Springer Science and Business Me-
dia, 2006.

[13] D. Morozov, Homological illusions of persistence and stability, ch. 6. Duke
University, 2008.

[14] M. Kerber and M. Söls, “The localized union-of-balls bifiltration,” 2023.

[15] M. Robinson, C. Capraro, C. Joslyn, E. Purvine, B. Praggastis, S. Ran-
shous, and A. Sathanur, “Local homology of abstract simplicial com-
plexes,” 2018.

[16] M. Robinson and J. Palladino, “Protocol-independent critical node de-
tection,” arXiv preprint arXiv:1607.06022, 2016.

[17] D. Cohen-Steiner, H. Edelsbrunner, and J. H. Harer, “Stability of per-
sistence diagrams,” In Proceedings of the twenty-first annual symposium
on Computational Geoemtry, pp. 263–271, 2005.

[18] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot,
“Proximity of persistence modules and their diagrams,” in Proceed-
ings of the Twenty-Fifth Annual Symposium on Computational Geometry,
p. 237–246, Association for Computing Machinery, 2009.

[19] M. Lesnick, “The theory of the interleaving distance on multidimen-
sional persistence modules,” Foundations of Computational Mathematics,
pp. 613–650, 2015.

[20] U. Bauer and M. Lesnick, “Induced matchings of barcodes and the alge-
braic stability theorem,” In Proceedings of the thirtieth annual symposium
on Computational geometry, pp. 355–364, 2014.

	Abstract
	Introduction
	Background
	Persistent Relative Homology
	The U-Match Decomposition

	An Algorithm for PRH
	Constructing the Boundary Matrix
	Decomposition and Permuting COMBs
	Matching Bases

	Stability
	Persistence Modules and the Isometry Theorem
	Stability of the U-Match PRH Algorithm

	Conclusion
	Bibliography

