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Abstract

In this project, I will study and prove the Primitive El-
ement Theorem (PET), including a brief exposition re-
garding the history of the theorem. Following this, I will
consider problem 7 in Section 8.2 of [3]. Finally, I will
extend this example to an illustrative discussion of Ga-
lois Theory and Algebraic Number Theory. In particu-
lar, Galois groups are often introduced as they naturally
arise from the study of the roots of a single polynomial.
Using this, we can make concrete statements regarding
the solvability by radicals of polynomials based on the
structure of their associated Galois groups. Conversely,
given a finite Galois (i.e. normal and separable) exten-
sion F{K, my discussion will describe how the PET can
be used to reduce the study of GalpF{Kq to the study
of a subset of the roots of a single polynomial over K.

1 Introduction

The primitive element theorem is intimately connected
to the development of Galois Theory. Indeed, the first
formulation of the theorem appeared in Èvariste Glaois’
first memoir of 1831, which was published in 1846. An
english translation is available at [5]. However, Galois’
formulation of the proof was incomplete, and restricted
to splitting fields over Q. The generalized formulation
of the PET is due to German mathematician Ernst
Steinitz [9], who published the proof in 1910 together
with Steinitz’s Theorem. Interestingly, Emil Artin’s re-
formulation of Galois Theory in [2] does not require the
notion of primitive elements.

2 Preliminaries

For the sake of expediting this exposition, we will take
standard definitions and concepts in ring and field the-
ory to be given, and will only provide background abso-
lutely essential for stating and proving the PET. We
will adopt standard convention by calling F the ex-
tension of a base field K and writing F{K to denote
the extension. Write E “ Kpu1, . . . , unq to denote the
smallest subfield of F that contains K and the elements
u1, . . . , un P F. In words, E is the extension of K gen-
erated by u1, . . . , un P F. In the case that E “ Kpuq for
a single u P F then E is called a simple extension of K.

Definition 1 (Algebraic Elements and Extensions).
An element u P F is called algebraic over K if there
exists fpxq P Krxs such that fpuq “ 0. The extension F
is called an algebraic extension of K if each u P F is
algebraic over K.

We have the following proposition, which which will be
a foundational concept in the present work.

Proposition 1 Let u P F be algebraic over base field
K. Then there exists a unique monic and irreducible
polynomial ppxq P Krxs such that ppuq “ 0, and we call
ppxq the minimal polynomial of u over K.

Proof. First, define the set

I “ tfpxq P Krxs : fpuq “ 0u Ă Krxs.

Observe that for any fpxq, gpxq P I we have fpuq `

gpuq “ 0, implying that fpxq ` gpxq P I. Further-
more, for any additional polynomial hpxq P Krxs we
have hpuqfpuq “ hpuq ¨ 0 “ 0. So I is an ideal of Krxs,
which is a principal ideal domain (PID). Thus, I is prin-
cipally generated and we can write I “ xppxqy for a non-
trivial polynomial ppxq P Krxs of minimal degree. Now,
take fpxq, gpxq P Krxs. Since Krxs is a PID, it follows
that anytime fpxqgpxq P I, we must have fpuq “ 0 or
gpuq “ 0, otherwise one of the two would be zero and a
zero divisor. Thus, I must but a prime ideal of a PID,
making it a maximal ideal of Krxs. Appealing to propo-
sition 5.3.9 of [3], then it must be the case that the factor
ring Krxs{xppxqy is a field, which is true if, and only if,
ppxq is irreducible over K. Finally, by taking ppxq to
be the unique monic generator of I, this completes the
proof. □

In fact, by taking the elements of F as vectors and
those inK as scalars, then F is in fact a vector space over
K. In particular, the vector addition axioms follow from
the abelian structure of the group pF,`q, and the scalar
multiplication axioms follow from the fact that K is a
subfield of F. Write rF : Ks to denote the dimension of
F as a vector space over K, and in words say that this is
the degree of F over K. In the case that rF : Ks is finite,
then F is called a finite extension of K. Introducing
this vector space perspective of extension fields allows
the proofs of the following propositions to be a simple
linear-algebraic exercises.



Proposition 2 Let u P F have a minimal polynomial
ppxq P Krxs such that deg ppxq “ n. It follows that
rKpuq : Ks “ n.

Proposition 3 Let u P F where F is a finite extension
of K. Then u is algebraic over K.

Thus, any finite extension is indeed algebraic. The
converse of Proposition 3 is also true, but we only need
the above for our exposition. We require one more def-
inition to state the PET.

Definition 2 (Separable Elements and Extensions). A
polynomial fpxq P Krxs is called separable if its ir-
reducible factors have only simple roots. An element
u P K that is algebraic over F is called separable when
its minimum polynomial is separable. An algebraic ex-
tension field F of K is called separable over K if each
of its elements is separable.

Theorem 4 (Primitive Element Theorem). Let F be
a finite extension of K. If F is separable over K, then
F{K is a simple extension.

Finally, to prove the special case of Theorem 4 in
which K is finite, we will recall the following fact of
finite field theory. See Section 6.5 of [3] for a proof.

Lemma 5 Any finite subgroup of a the multiplicative
group of a field is cyclic.

3 Proving the PET

The proof outlined here will follow a standard pattern
(c.f. [3, 7]). The case for finite K is handled easily via
Lemma 5, although we will explicitly walk through this
below. For the infinite case, assume that for α, β P F

we have F “ Kpα, βq. Following this assumption, we
may utilize the fact that F{K is a separable extension
to observe that the minimum polynomials of u and v
each have unique roots. Leveraging this fact, we con-
struct a single primitive element for the extension. Note
that this is enough to conclude the proof by observing
that we can extend this result inductively by taking the
above to be our base case and then writing

Kpα1, α2, . . . , αrq “ Kpβm, αm`1, . . . , αrq “ . . .

where βm is a primitive element for the extension gener-
ated by adjoining α1, . . . , αm. In other words, the field
extension Kpβm, αm`1, . . . , αrq is constructed via itera-
tively applying the base case, and eventually we are left
with an extension generated by a single element, βr.

3.1 Finite Fields

For now, take K to be finite and let F be a finite exten-
sion of K such that |F| “ n ` 1. Thus, F is also finite
and it follows from Lemma 5 that the units Fx give a
cyclic group pFx,ˆq “ xαy of order n under the multi-
plication on F. To proceed, we will show that F “ Kpαq

by showing that the subset relationship holds in either
direction. The case for the zero element is trivial. Addi-
tionally, it follows by definition thatKpαq is the smallest
subfield of F which contains the elements of K and α, so
the only work here is to show that F Ď Kpαq. Suppose
that γ P F. Then we can write γ “ αm for some m ď n.
But α P Kpαq, so we must have γ “ αm P Kpαq. Thus,
F Ď Kpαq, which completes the proof for the finite case.

3.2 Infinite Fields

Let F “ Kpα, βq and fpxq, gpxq P Krxs the minimum
polynomials for α and β with degrees m and n respec-
tively. Additionally, let E be an extension of F such that
fpxq, gpxq both split over E. Since the extension F{K is
separable by assumption, then the roots α1, . . . , αm P E

and β1, . . . , βn P E of, respectively, fpxq and gpxq, are
distinct. Note that we must have α as a root of fpxq

and β as a root of gpxq by definition. Without loss of
generality, we will assume that α1 “ α and β1 “ β.
Now define the linear function

αi ` βjx “ α ` βx.

Observe that taking j “ 1 will not admit unique so-
lutions since it reduces the above to

αi ´ α “ pβ ´ βqx “ 0 ¨ x.

For instance, fix x “ 1 and choose any x P E. On the
other hand, by choosing j ‰ 1, the above will admit a
unique solution of the form

x “
α ´ αi

βj ´ β
P E.

Since K is infinite and there are finitely many αi and
βj , there must exist c P K such that α ` βc ‰ αi ` βjc
for all i and each j ‰ 1. Now consider the element
t “ α ` βc P E. It is immediate that Kptq Ď Kpα, βq

since c P K and α, β P Kpα, βq. Thus, it will be enough
to conclude the proof by showing that Kpα, βq Ď Kptq.

To proceed, we define hpxq “ fpt´ cxq P Kptqrxs and
let ppxq be the minimal polynomial of β over Kptq. By
construction, we have that

hpβq “ fpα ` βc ´ βcq “ fpαq “ 0.

Since gpβq “ 0 by assumption as well and ppxq has
minimal degree, then it must be the case that ppxq is
a common divisor of both hpxq and gpxq over the field



Kptq. However, we chose c such that α ` βc ‰ αi ` βjc
unless i “ j “ 1. Thus, it follows that β is indeed the
only root that hpxq and gpxq share over the extension E
as well, implying that we have gcdphpxq, gpxqq “ x ´ β.
But since ppxq is a common divisor of the two over a
subfield of E, then it must also divide the two over E.
Thus, ppxq can have degree no larger than that of the
linear factor x ´ β. This implies that degpppxqq “ 1, so
by Proposition 2 we have

rKpt, βq : Kptqs “ 1 ñ β P Kptq.

Finally, as c P K then it follows that

cβ P Kptq ñ t ` cβ “ α P Kptq.

Hence, Kpα, βq Ď Kptq, which completes the proof.

3.3 A modified formulation

The statement of the PET can be relaxed as follows.

Claim 1 Let F “ Kpα1, . . . , αrq be a finite extension
of K and assume that αi are separable over K for i ‰ 1.
Then F{K is a finite extension.

The distinction here is that we do not take α1 to have a
minimal polynomial that is separable, and hence we do
not require that the extension field is separable either.
This statement allows F to satisfy milder assumptions
when compared to the form of the theorem previously
stated. In particular, this recognizes that Kpα1q is sim-
ple by definition, so we do not require the separability
assumption for that single element.

4 Computing a primitive element

Although the proof of PET is not explicitly construc-
tive, it does provide useful intuition for how to construct
a primitive element. Extending the above result induc-
tively, we see that a primitive element of the finite ex-
tension F “ Kpα1, . . . , αrq can be chosen to be a linear
combination of the form c1α1 ` ¨ ¨ ¨ ` crαr for ci P K.
However, determining the ci is not immediate (c.f. Ex-
ample 1). As is noted in [6], if F is a Galois extension
of K, then an element of this form is primitive if each
non-identity automorphism of GalpF{Kq moves it.

Example 1 For ω “ p´1`
?
3 ¨ iq{2 being the primitive

cubed root unity, then we have Qpω, 3
?
2q “ Qpω `

3
?
2q.

To show that the above claim holds, we can first start
by noting that each extension over Q is of the same
degree. Hence, by methods of linear algebra, we can see
immediately the the two extension are, at very least,
isomorphic as vector spaces over Q. Computing the
characteristic polynomial of 3

?
2 over Q we obtain

x “
3
?
2 ðñ x3 ´ 2 “ 0,

which is irreducible via Eisenstein’s Criterion. Similarly,
for ω over Qp

3
?
2q we have

p´1 `
?
3 ¨ iq{2 “ x ðñ

ˆ

2x ` 1

i

˙2

´ 3 “ 0.

Expanding, we obtain a minimal polynomial ´4x2 ´

4x´4 and a simple application of the quadratic formula

reveals that its roots are x “ ´ 1
2 ˘ i

?
3
2 , which lie in C.

As both minimal polynomials are irreducible, then the
tower law and Proposition 2 imply that

rQpω,
3
?
2q : Qs “ rQpω,

3
?
2q : Qp

3
?
2qs ¨ rQp

3
?
2q : Qs “ 6.

Hence, a basis for this vector space over Q is

B “ t1, ω,
3
?
2, ω

3
?
2,

3
?
4, ω

3
?
4u.

On the other hand, determining a minimal polyno-
mial for ω`

3
?
2 proceeds as follows by letting x “ ω`

3
?
2

and writing:

x “ p´1 `
?
3 ¨ iq{2 `

3
?
2

x “ ´
1

2
`

?
3

2
i `

3
?
2

2 “

ˆ

x `
1

2
´

?
3

2
i

˙3

Expanding and collecting the single term with an irra-
tional coefficient yields:

2

3
x3 ` x2 ´ x ´ 2 “ i

?
3 ¨ px ` 1qx

ˆ

2

3
x3 ` x2 ´ x ´ 2

˙2

“ ´3x2px ` 1q2

While this is certainly not a nice closed form, it is
enough to determine that

rQpω `
3
?
2q : Qs “ 6,

and since this extension is simple, we obtain a basis

tpω `
3
?
2qku5k“0.

It is enough to conclude by showing that these bases
generate the exact same vector space. In particular, we
can express each power of ω `

3
?
2 in terms of the basis

B. To do so, we compute

pω `
3
?
2q0 “ 1

pω `
3
?
2q1 “ ω `

3
?
2

pω `
3
?
2q2 “ 1 ´ ω ` 2ω

3
?
2 `

3
?
4

pω `
3
?
2q3 “ 3 ´

3
?
2 ´ 3ω

3
?
2 ` 3ω

3
?
4

pω `
3
?
2q4 “ 9ω ` 6

3
?
2 ´ 6

3
?
4 ´ 6ω

3
?
4

pω `
3
?
2q5 “ ´21 ´ 21ω ` 15ω

3
?
2 ` 12

3
?
4



which yields a coefficient matrix

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨ ´1 3 ¨ ´21
¨ 1 ´1 ¨ 9 ´21
¨ 1 ¨ ´1 6 ¨

¨ ¨ 2 ´3 ¨ 15
¨ ¨ 1 ¨ ´6 12
¨ ¨ ¨ 3 ´6 ¨

˛

‹

‹

‹

‹

‹

‹

‚

where powers of ω `
3
?
2 ascend with column index and

elements of the basis B ascend with row index. This
matrix is invertible. For instance, one can compute with
code that its determinant is nonzero. This completes
the proof of the claim.

5 Number Fields

In this course, our discussion of the topics addressed in
this exposition were primarily employed for the devel-
opment of Galois theory, and in particular to study the
roots of polynomials with coefficients in Q. However,
it is natural to wonder whether this process can be re-
versed. In other words, given a finite Galois extension
F “ Kpα1, . . . , αrq ofK, what information can one learn
about F{K using Galois Theory?

Indeed, the primary focus of Algebraic Number The-
ory [7, 8] is to study arithmetic in so-called Number
Fields, or finite extensions of Q. In fact, the PET pro-
vides a natural way to characterize number fields in
terms of a single element and/or polynomial. For in-
stance, taking the example from the previous section,
Algebraic Number Theory provides tools to understand
arithmetic in Qpω, 3

?
2q by understanding properties of

the minimal polynomial of t “ ω`
3
?
2. This works since

t is guaranteed to be algebraic over K when the finite
extension is Galois. Furthermore, it is natural to em-
ploy Galois Theory for this task since we have reduced
the study of a Galois extension F{K to the study of a
single polynomial which has roots in F.

6 Concluding Remarks

We have proven the PET for the case of finite and infi-
nite fields. Following this, we exemplified how one may
compute the primitive element of a finite extension. Fi-
nally, we motivated the foundational role that the PET
plays in Algebraic Number Theory. The style file for this
paper was modified from the Canadian Conference on
Computation Geometry available at [1]. The style file
for the associated presentation is due to Professor Lori
Ziegelmeier of Macalester College. The content covered
in this project was inspired from this summer research
internship at MIT [4].
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