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Abstract

In this project, I will study and prove the Primitive El-
ement Theorem (PET), including a brief exposition re-
garding the history of the theorem. Following this, I will
consider problem 7 in Section 8.2 of [3]. Finally, I will
extend this example to an illustrative discussion of Ga-
lois Theory and Algebraic Number Theory. In particu-
lar, Galois groups are often introduced as they naturally
arise from the study of the roots of a single polynomial.
Using this, we can make concrete statements regarding
the solvability by radicals of polynomials based on the
structure of their associated Galois groups. Conversely,
given a finite Galois (i.e. normal and separable) exten-
sion IF/IK, my discussion will describe how the PET can
be used to reduce the study of Gal(FF/K) to the study
of a subset of the roots of a single polynomial over K.

1 Introduction

The primitive element theorem is intimately connected
to the development of Galois Theory. Indeed, the first
formulation of the theorem appeared in Evariste Glaois’
first memoir of 1831, which was published in 1846. An
english translation is available at [5]. However, Galois’
formulation of the proof was incomplete, and restricted
to splitting fields over Q. The generalized formulation
of the PET is due to German mathematician Ernst
Steinitz [9], who published the proof in 1910 together
with Steinitz’s Theorem. Interestingly, Emil Artin’s re-
formulation of Galois Theory in [2] does not require the
notion of primitive elements.

2 Preliminaries

For the sake of expediting this exposition, we will take
standard definitions and concepts in ring and field the-
ory to be given, and will only provide background abso-
lutely essential for stating and proving the PET. We
will adopt standard convention by calling F the ez-
tension of a base field K and writing F/K to denote
the extension. Write E = K(uy,...,u,) to denote the
smallest subfield of I that contains I and the elements
Uy,...,u, € F. In words, [E is the extension of K gen-
erated by uy,...,u, € F. In the case that I = K(u) for
a single u € I then I is called a simple extension of K.

Definition 1 (Algebraic FElements and Extensions).
An element u € T is called algebraic over KK if there
exists f(x) € K[x] such that f(u) = 0. The extension F
18 called an algebraic extension of K if each u € I is
algebraic over K.

We have the following proposition, which which will be
a foundational concept in the present work.

Proposition 1 Let u € F be algebraic over base field
K. Then there exists a unique monic and irreducible
polynomial p(x) € K[z] such that p(u) = 0, and we call
p(x) the minimal polynomial of u over K.

Proof. First, define the set

I={f(z)eK[z]: f(u) =0} c K[z].

Observe that for any f(z),g(z) € I we have f(u) +
g(u) = 0, implying that f(x) + g(z) € I. Further-
more, for any additional polynomial h(z) € K[z] we
have h(u)f(u) = h(u) -0 = 0. So I is an ideal of K[x],
which is a principal ideal domain (PID). Thus, I is prin-
cipally generated and we can write I = (p(x)) for a non-
trivial polynomial p(z) € K[z] of minimal degree. Now,
take f(x),g(x) € K[z]. Since K[z] is a PID, it follows
that anytime f(x)g(z) € I, we must have f(u) = 0 or
g(u) = 0, otherwise one of the two would be zero and a
zero divisor. Thus, I must but a prime ideal of a PID,
making it a maximal ideal of K[x]. Appealing to propo-
sition 5.3.9 of [3], then it must be the case that the factor
ring K[z]/{p(x)) is a field, which is true if, and only if,
p(x) is irreducible over K. Finally, by taking p(z) to
be the unique monic generator of I, this completes the
proof. O

In fact, by taking the elements of I as vectors and
those in KK as scalars, then I is in fact a vector space over
K. In particular, the vector addition axioms follow from
the abelian structure of the group (IF, +), and the scalar
multiplication axioms follow from the fact that K is a
subfield of . Write [IF : K] to denote the dimension of
IF as a vector space over IK, and in words say that this is
the degree of IF over K. In the case that [IF : K] is finite,
then T is called a finite extension of IK. Introducing
this vector space perspective of extension fields allows
the proofs of the following propositions to be a simple
linear-algebraic exercises.



Proposition 2 Let u € I have a minimal polynomial
p(z) € K[z] such that deg p(x) = n. It follows that
[K(u) : K] = n.

Proposition 3 Let u € IF where F is a finite extension
of K. Then u is algebraic over IK.

Thus, any finite extension is indeed algebraic. The
converse of Proposition 3 is also true, but we only need
the above for our exposition. We require one more def-
inition to state the PET.

Definition 2 (Separable Elements and Extensions). A
polynomial f(x) € K[z] is called separable if its ir-
reducible factors have only simple roots. An element
u € K that is algebraic over I is called separable when
its minimum polynomial is separable. An algebraic ex-
tension field F of K is called separable over K if each
of its elements is separable.

Theorem 4 (Primitive Element Theorem). Let T be
a finite extension of IK. If IF is separable over IK, then
F/KK is a simple extension.

Finally, to prove the special case of Theorem 4 in
which K is finite, we will recall the following fact of
finite field theory. See Section 6.5 of [3] for a proof.

Lemma 5 Any finite subgroup of a the multiplicative
group of a field is cyclic.

3 Proving the PET

The proof outlined here will follow a standard pattern
(c.f. [3, 7]). The case for finite K is handled easily via
Lemma 5, although we will explicitly walk through this
below. For the infinite case, assume that for o, 8 € IF
we have F = K(«, ). Following this assumption, we
may utilize the fact that IF/IK is a separable extension
to observe that the minimum polynomials of v and v
each have unique roots. Leveraging this fact, we con-
struct a single primitive element for the extension. Note
that this is enough to conclude the proof by observing
that we can extend this result inductively by taking the
above to be our base case and then writing
Koy, ag,...,00) = K(Bmy Qmgty ooy r) = ...

where 3, is a primitive element for the extension gener-
ated by adjoining a7, ..., ;. In other words, the field
extension K(B,, @m41, - - -, ) is constructed via itera-
tively applying the base case, and eventually we are left
with an extension generated by a single element, [3,.

3.1 Finite Fields

For now, take KK to be finite and let I be a finite exten-
sion of K such that || = n + 1. Thus, I is also finite
and it follows from Lemma 5 that the units IF* give a
cyclic group (F*, x) = {a) of order n under the multi-
plication on IF. To proceed, we will show that ' = K(«)
by showing that the subset relationship holds in either
direction. The case for the zero element is trivial. Addi-
tionally, it follows by definition that K («) is the smallest
subfield of IF which contains the elements of IK and «, so
the only work here is to show that F < K(«). Suppose
that v € F. Then we can write v = o™ for some m < n.
But a € K(«), so we must have 7 = o™ € K(«). Thus,
F < K(«), which completes the proof for the finite case.

3.2 Infinite Fields

Let F = K(a, ) and f(z),g(z) € K[z] the minimum
polynomials for o and 8 with degrees m and n respec-
tively. Additionally, let IE be an extension of IF such that
f(x), g(x) both split over IE. Since the extension F/KK is
separable by assumption, then the roots ay,...,a,, € &
and f1,..., 5, € E of, respectively, f(z) and g(z), are
distinct. Note that we must have a as a root of f(x)
and 8 as a root of g(x) by definition. Without loss of
generality, we will assume that a; = « and 81 = S.
Now define the linear function

o; + Bz = a+ fx.

Observe that taking j = 1 will not admit unique so-
lutions since it reduces the above to

a—a=(B-8)xr=0-z.

For instance, fix £ = 1 and choose any x € E. On the
other hand, by choosing j # 1, the above will admit a
unique solution of the form

_a—ai
C BB

Since K is infinite and there are finitely many «; and
Bj, there must exist ¢ € K such that a + ¢ # oy + B¢
for all ¢ and each j # 1. Now consider the element
t = a+ fec e E. It is immediate that K(t) < K(«, )
since ¢ € K and a, 8 € K(a, 8). Thus, it will be enough
to conclude the proof by showing that K(a, 8) < K(¢).

To proceed, we define h(z) = f(t —cz) € K(t)[z] and
let p(z) be the minimal polynomial of 8 over K(¢). By
construction, we have that

h(B) = fla+ Be— Be) = f(a) = 0.

T eE.

Since ¢g(8) = 0 by assumption as well and p(z) has
minimal degree, then it must be the case that p(x) is
a common divisor of both A(x) and g(x) over the field



KK(t). However, we chose ¢ such that a + B¢ # a; + B¢
unless ¢ = j = 1. Thus, it follows that 5 is indeed the
only root that h(z) and g(x) share over the extension E
as well, implying that we have ged(h(x), g(z)) = = — .
But since p(x) is a common divisor of the two over a
subfield of I, then it must also divide the two over IE.
Thus, p(z) can have degree no larger than that of the
linear factor  — 8. This implies that deg(p(x)) = 1, so
by Proposition 2 we have

[K(t, 8) : K(H)] = 1 = B K(1).
Finally, as c € K then it follows that
cfeK(t)=t+cf=acK(t).

Hence, K(«, 8) < K(t), which completes the proof.

3.3 A moaodified formulation

The statement of the PET can be relaxed as follows.

Claim 1 Let F = K(aq,...,a.) be a finite extension
of K and assume that «; are separable over K fori # 1.
Then F/IK is a finite extension.

The distinction here is that we do not take a1 to have a
minimal polynomial that is separable, and hence we do
not require that the extension field is separable either.
This statement allows IF to satisfy milder assumptions
when compared to the form of the theorem previously
stated. In particular, this recognizes that IK(«) is sim-
ple by definition, so we do not require the separability
assumption for that single element.

4 Computing a primitive element

Although the proof of PET is not explicitly construc-
tive, it does provide useful intuition for how to construct
a primitive element. Extending the above result induc-
tively, we see that a primitive element of the finite ex-
tension I = K(a;,. .., ) can be chosen to be a linear
combination of the form ciaq + -+ + ¢, for ¢; € K.
However, determining the ¢; is not immediate (c.f. Ex-
ample 1). As is noted in [6], if IF is a Galois extension
of K, then an element of this form is primitive if each
non-identity automorphism of Gal(IF/IK) moves it.

Example 1 Forw = (—1++/3-i)/2 being the primitive
cubed root unity, then we have Q(w, ¥/2) = Q(w + ¥/2).

To show that the above claim holds, we can first start
by noting that each extension over Q is of the same
degree. Hence, by methods of linear algebra, we can see
immediately the the two extension are, at very least,
isomorphic as vector spaces over Q. Computing the
characteristic polynomial of {/2 over Q we obtain

x:%(:} 1:372:(),

which is irreducible via Eisenstein’s Criterion. Similarly,
for w over Q(4/2) we have
2z + 1\
( z > —3=0.
)

Expanding, we obtain a minimal polynomial —4z2 —

4x —4 and a simple application of the quadratic formula
reveals that its roots are z = —1 + i@, which lie in C.
As both minimal polynomials are irreducible, then the
tower law and Proposition 2 imply that

[Q(w, V2) : Q] = [Q(w, ¥/2) : Q(V2)]-[Q(V/2) : Q] = 6.

(-1+V3-))2=2 =

Hence, a basis for this vector space over Q is
B={1,w,V2,wV2,V4,wV4}.

On the other hand, determining a minimal polyno-
mial for w+ /2 proceeds as follows by letting = w+ /2
and writing:

=(-1++V3-9)/2+ 2
1 V3. s

S R
3

1 V3

- 1 V3
<x+2 22)

Expanding and collecting the single term with an irra-
tional coefficient yields:

2 23
37

9 2
(3333 e 2) = —32%(x + 1)?

+x x—2—z\f( + 1)z

While this is certainly not a nice closed form, it is
enough to determine that

[Qw +V¥2): Q] =
and since this extension is simple, we obtain a basis
{(w+V2)" .

It is enough to conclude by showing that these bases
generate the exact same vector space. In particular, we
can express each power of w + ¢/2 in terms of the basis
B. To do so, we compute

(w+v2)° =
(w+\f)1—w+xf

(wWH+ V22 =1—w+2wV2+ V4

(w+ V2)3 =3 — V2 —3wV2+ 3wV4
(w+ V2)' = 9w + 6V2 — 674 — 6wv/4
(w+ V2)% = —21 — 21w + 15wv/2 + 127/4



which yields a coefficient matrix

1 - -1 3 - =21
1 -1 - 9 =21
1 - -1 6 :

2 =3 15
1 - =6 12
3 —6

where powers of w + /2 ascend with column index and
elements of the basis B ascend with row index. This
matrix is invertible. For instance, one can compute with
code that its determinant is nonzero. This completes
the proof of the claim.

5 Number Fields

In this course, our discussion of the topics addressed in
this exposition were primarily employed for the devel-
opment of Galois theory, and in particular to study the
roots of polynomials with coefficients in Q. However,
it is natural to wonder whether this process can be re-
versed. In other words, given a finite Galois extension
F =K(ay,...,aq.) of K, what information can one learn
about IF/IK using Galois Theory?

Indeed, the primary focus of Algebraic Number The-
ory [7, 8] is to study arithmetic in so-called Number
Fields, or finite extensions of Q. In fact, the PET pro-
vides a natural way to characterize number fields in
terms of a single element and/or polynomial. For in-
stance, taking the example from the previous section,
Algebraic Number Theory provides tools to understand
arithmetic in Q(w, v/2) by understanding properties of
the minimal polynomial of ¢t = w+ /2. This works since
t is guaranteed to be algebraic over KK when the finite
extension is Galois. Furthermore, it is natural to em-
ploy Galois Theory for this task since we have reduced
the study of a Galois extension F/K to the study of a
single polynomial which has roots in IF.

6 Concluding Remarks

We have proven the PET for the case of finite and infi-
nite fields. Following this, we exemplified how one may
compute the primitive element of a finite extension. Fi-
nally, we motivated the foundational role that the PET
plays in Algebraic Number Theory. The style file for this
paper was modified from the Canadian Conference on
Computation Geometry available at [1]. The style file
for the associated presentation is due to Professor Lori
Ziegelmeier of Macalester College. The content covered
in this project was inspired from this summer research
internship at MIT [4].

[9]
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