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BACKGROUND



TOPOLOGY

Topology is concerned with certain qualitative properties of
spaces/objects that are invariant (do not change) under certain
types of continuous transformations (functions).
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SIMPLICIAL COMPLEXES

® Study a complicated structure by breaking it into “simple
pieces” called simplices.
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Definition

A simplicial complex is a subspace K C R” such that
1. ifo € Kand 7 C o then 7 € K.
2. if 0,7 € K then o N 7 is empty or a subsimplex of both.

¢ Graphs/networks, topological spaces, point cloud data, etc.

0-A %



. . . * R N Vy

Definition

Define C,(K) to be the Z, vector space whose basis is the set of
n-simplices in K.

® A linear combination of n-simplices is an n-chain.

® For example, Co(K) is spanned by the following basis of
2-simplices:

{vedb v}



BOUNDARY OPERATORS

Define the (alternating) boundary operator as a linear transfor-
mation 0, : Co(K) — Co—1(K) given by

[Vovi ... vp] — Z(—l)j[vovl Vi V)

Jj=0

® Map an n-simplex to an (n — 1)-chain which is its boundary.

——o
® Every function has a
® Kernel: All inputs that map to zero.
® Image: All outputs.

® Elements in the kernel of a boundary operator are called
cycles, and elements in the image are boundaries.



BOUNDARY OPERATORS (EXAMPLE)

What is 01 for the following simplicial complex K7

® Recall 05 : Cl(K) — Co(K)
* Gi(K) = {[ab], [ac], [be], [cd], [ce], [de]}
e Go(K)={a,b,c,d, e}



BOUNDARY OPERATORS (EXAMPLE)

What is 0y for the following simplicial complex K7

® We have 01([vov1]) = [Vovi] — [vovi], now fill out each column
of the matrix!

[ab] [ac] [bc] [cd] [ce] [de]



BOUNDARY OPERATORS (EXAMPLE)

What is 0y for the following simplicial complex K7

® We have 01([vov1]) = [Vovi] — [vovi], now fill out each column
of the matrix!

[ali] [ac] [be] [cd] [ce] [de]

a
b
81:C
d
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BOUNDARY OPERATORS (EXAMPLE)

What is 0y for the following simplicial complex K7

® We have 01([vowv1]) = [Vova] — [vovi], now fill out each column
of the matrix!
[ab] [ac] [bc] [cd] [ce] [de]
-1 -1
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BOUNDARY OPERATORS (EXAMPLE)

What is 0y for the following simplicial complex K7

® We have 01([vov1]) = [Vovi] — [vovi], now fill out each column
of the matrix!
[ab] [ac] [bc] [cd] [ce] [de]

a/—-1 -1

bl 1 -1
81 = C 1 1
d
e
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BOUNDARY OPERATORS (EXAMPLE)

What is 0y for the following simplicial complex K7

® We have 01([vowv1]) = [Vova] — [vovi], now fill out each column
of the matrix!
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BOUNDARY OPERATORS (EXAMPLE)

What is 0y for the following simplicial complex K7

® We have 01([vowv1]) = [Vova] — [vovi], now fill out each column
of the matrix!
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CHAIN COMPLEXES

® A chain complex is a sequence of boundary operators where
On—10n = 0, which means a boundary has no boundary.
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® Notice: Im(Opy1) C Ker(0,)

® Every (n+ 1)-boundary is also an n-cycle, but the converse is
not always true.
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HOMOLOGY GROUPS

® A homology group H,(K) describes all of the n-dimensional
holes in the simplicial complex K.
® Deterrmine which cycles are not boundaries.

H,(K) = Ker(0p—1)/Im(05)

= cycles — boundaries

HyK) = {2 <7< 2 <7}

N
©
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PERSISTENT HOMOLOGY



WHAT IS PERSISTENT HOMOLOGY?

® Persistent homology (PH) is a tool in topological data
analysis (TDA) used to study the shape of data.

e Apply homology to a sequence of nested topological spaces
called a filtered topological space.

® Features which are born and die quickly are noise.
® Associate features of interest as topological holes.

® Important features persist throughout filtration.

17



18



Let €1 be a positive real number. Place a disk with a radius of €;
around each point.
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Let €1 be a positive real number. Place a disk with a radius of €;
around each point.
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This is a simplicial complex. Call it Kj.
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Now let €1 < €p and repeat, with the rule that anytime k + 1
points are pairwise within 2¢, of each other, form a k simplex:

o2 A
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Notice that K; C K5. Also, there are now connected
components in Kj.
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Notice that K3 has one-dimensional features, called loops.
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Finally, we have simplicial complex Kj:
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The scale parameter ¢; < €5 < €3 < ¢4 gives us the following

filtration.

S ()

Notice that homological features (connected components, loops,
etc) emerge. Some of them stay, and some of them are removed
quickly! This method is called a Cech complex.
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DEFINITIONS

Definition
A finite filtration on a simplicial complex K, denoted F,K, is
given by K C F[obK C --- C FyK, where FyK = K.

Definition
A simplicial complex K equipped with a filtration F is called a
filtered simplicial complex.

Definition
Say that 0 € K born at F;K has a filtration value b(c) = t.
Thus, K = {0 € K : b(o) < t}.




PERSISTENT RELATIVE HOMOLOGY



QUOTIENT SPACES

Suppose topological spaces X and A such that A C X. Then the
quotient space is defined as

X/A=(X\A)U=*

where * is a single point.

- Y - Db

-10 1 2 R/Z

'Image from Essential Topology by Martin D. Crossley (2005).



RELATIVE CHAINS

® Suppose two simplicial complexes K and Ky where Ky C K.

Definition

The relative chain vector space is the quotient vector space
Co(K, Ko) = Co(K)/Cn(Kp), which describes the span of all rel-
ative n-chains in K/Kj.

® Ch(K, Kp) partitions a basis for C,(K) into cosets (or
equivalence classes) of the form ¢ + C,(Kp).

® Equivalence classes {[c]} give a basis for all chains in K — Kp.
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RELATIVE HOMOLOGY

¢ Relative Homology is the homology of K/Kp.

® Cycles and boundaries look different in this setting.
Definition
A Relative n-Cycle is any n-chain a € C,(K) such that d,(a) €

Cr-1(Ko). In words, any n-chain with a boundary in the subspace
Ko.



RELATIVE HOMOLOGY

¢ Relative Homology is the homology of K/Kp.
® Cycles and boundaries look different in this setting.

Definition
A Relative n-Cycle is any n-chain a € C,(K) such that d,(a) €
Cr-1(Ko). In words, any n-chain with a boundary in the subspace

Definition

A Relative n-Boundary is any relative n-cycle o = 9p1(8)+y for
some 3 € Ch11(K) and v € Cy(Kp). In words, any n-cycle which
differs from an absolute boundary by a chain in the subspace Kj.
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RELATIVE HOMOLOGY

¢ Relative Homology is the homology of K/Kp.
® Cycles and boundaries look different in this setting.

Definition
A Relative n-Cycle is any n-chain a € C,(K) such that d,(a) €
Cr-1(Ko). In words, any n-chain with a boundary in the subspace

Definition

A Relative n-Boundary is any relative n-cycle o = 9p1(8)+y for
some 3 € Ch11(K) and v € Cy(Kp). In words, any n-cycle which
differs from an absolute boundary by a chain in the subspace Kj.

‘x

b

O1(a) = 01(02(B)) + () = 01(v) € Co(Ko). 2



PERSISTENT RELATIVE HOMOLOGY

® Given FoK and G, Kp.

¢ Persistent Relative Homology (PRH) is the homology of a
filtered quotient space K/Kp.

® Require that G;Ky C F;K for each time-step t.
® Do not require that o € K satisfy bg(o) = bg(0).



THE U-MATCH DECOMPOSITION



DEFINITION

® Assume D is the block boundary matrix of a chain complex,
so D is square and D? = 0.

0 O
0 0O
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DEFINITION

® Assume D is the block boundary matrix of a chain complex,
so D is square and D? = 0.

0 O
0 0O

0 Own
0

® Reduce D bottom to top and left to right. 71 records row
operations, and S records column operations.

DIHHMT‘l
l, 0 S 0

31



DEFINITION

® Assume D is the block boundary matrix of a chain complex,
so D is square and D? = 0.

0 O
0 0O

0 Own
0

® Reduce D bottom to top and left to right. 71 records row
operations, and S records column operations.

D Y _, (M T
Im 0O S 0
® A U-Match Decomposition is a tuple of matrices
(T, M, D,S) which satisfy the following three conditions:
® TM=DS

® M is a matching matrix

® 7 and S are both upper triangular and invertible
31



U-MATCH DECOMPOSITION

® Persistence algorithms use matrix decomposition techniques.

® 7 and S contain information about homology.

0 O
D D 0 o
D 0 On

0
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U-MATCH DECOMPOSITION

® Persistence algorithms use matrix decomposition techniques.

® 7 and S contain information about homology.

0 O
D D 0 o
D 0 On

0

T X M = D X S

® QOrdering the rows and columns of D carefully allows us to
compute persistent homology.
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U-MATCH PROPERTIES

® Let 7TM = DS be a U-match decomposition, where D is the
block boundary matrix of a chain complex.
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U-MATCH PROPERTIES

® Let 7TM = DS be a U-match decomposition, where D is the
block boundary matrix of a chain complex. Let r, and c,
denote, respectively, the set of indices of nonzero rows and
columns of the matching matrix M.
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U-MATCH PROPERTIES

® Let 7TM = DS be a U-match decomposition, where D is the
block boundary matrix of a chain complex. Let r, and c,
denote, respectively, the set of indices of nonzero rows and
columns of the matching matrix M.

The set of indices r, and ¢, are disjoint. Hence, ry C C,.

Outline of proof.

* TM=DS = S 1TM=S5"1DS.

* (S71DS)? =S7'D%S =0.

® (S71TM)? = 0 implies that indices of nonzero rows and
columns of S7YTM are disjoint.



U-MATCH PROPERTIES (CONTINUED)

® et TM = DS be a U-match decomposition, where D is the
block boundary matrix of a chain complex. Let r, and ¢,
denote, respectively, the set of indices of nonzero rows and
columns of the matching matrix M.

Columns of T indexed by the set r, give a basis for Im(D), which
are the boundaries.

Outline of Proof:
® COL(TM) = COL{(DS) = COLj(TM) =D - COL;(S). So
COL;(T M) is the boundary of some column of S.

® Can write COL;(TM) = COL;(T) - M where i corresponds to
nonzero row in M.



U-MATCH PROPERTIES (CONTINUED)

® Let TM = DS be a U-match decomposition, where D is the
block boundary matrix of a chain complex. Let r, and ¢,
denote, respectively, the set of indices of nonzero rows and
columns of the matching matrix M.

Columns of S indexed by the set ¢, contain a basis for Ker(D),
which are the cycles.

Outline of Proof:

® Assume j € G,.
®* D-COLi(S)=T-COL;(M)="T - 0=0.



U-MATCH PROPERTIES (CONTINUED)

® U-Match allows us to compute matched bases for cycles and
boundaries.

® This means a set of basis vectors for Im(D) is a subset of a
set of basis vectors for Ker(D).

® How? Prove this by construction!
® Construct a matrix J from the matrix S with the substitution

COL,(S) — COL.(TM).

® Columns of J contain a basis for both Im(D) and Ker(D).
* COLc (J) = Ker(D)
* COL,.(J) = Im(D)

® Recall that re € G,.
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U-MATCH FOR PERSISTENCE

® Suppose a filtered simplicical complex FoK.

e Construct the block boundary matrix where filtration value
increases with row and column indices.

® This ordering is carried over to 7, § and M:

c € FK c € F K
seF.K( T ) ceF.K( M )
s € FoK c € FK

seF.K( : )seF.K( s )

37



THE U-MATCH PRH ALGORITHM



THE ALGORITHM

A high-level overview:
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A high-level overview:

1. Permute rows of block boundary matrix D to obtain a
relative boundary matrix D.
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relative boundary matrix D.
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THE ALGORITHM

A high-level overview:

1.

Permute rows of block boundary matrix D to obtain a
relative boundary matrix D.

2. Perform a U-Match on D to get, TM = DS.

3. Permute columns of 7 to obtain a matrix .4, and columns of

S to obtain a matrix B.
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THE ALGORITHM

A high-level overview:

1. Permute rows of block boundary matrix D to obtain a
relative boundary matrix D.

2. Perform a U-Match on D to get, TM = DS.

3. Permute columns of 7 to obtain a matrix .4, and columns of
S to obtain a matrix 5.

4. Perform a U-Match on A~!B to obtain 7 M = (A™1B).7.

Result: One single matrix whose columns contain a filtered basis
for the relative cycles and relative boundaries!

39



STEP 1: THE BOUNDARY MATRIX

® Suppose you have the boundary matrix of a filtered simplicial
complex FoK, and you also have a filtered subcomplex GoKGp.

® Permute rows (top to bottom) to respect birth of simplices in
GeKp.

e Why?

40



STEP 1: THE BOUNDARY MATRIX

® Suppose you have the boundary matrix of a filtered simplicial
complex FoK, and you also have a filtered subcomplex GoKGp.

® Permute rows (top to bottom) to respect birth of simplices in
GeKp.

e Why? Relative chains correspond to cosets ¢ + C,(Kp), and
U-Match reduces rows from bottom to top!

40



STEP 2: U-MATCH

® The U-Match TM = DS has a few key differences since we
use D rather than D.

c € GoKp c € FK
CRS G.Ko ( T ) [lS G.Ko ( M )
s€ F K c € FK

seG.KO( . )sem( s )

41



STEP 2: U-MATCH

® Using this modified U-Match, we can prove the following:

Suppose that Vi, is a vector space with dimension i spanning all
chains in Ky. Then the first i columns of 7 from the U-Match
TM = DS are a basis which spans V.

Suppose a U-Match TM = DS. Then
(a) the columns of S contain a basis for the relative cycles denoted
RelKer(D).

(b) the columns of T contain a basis for the relative boundaries denoted
Rellm(D).



STEP 3: PERMUTE COLUMNS

® The previous results show that this method can compute
relative homology. How do we turn this into persistent relative
homology?

® Permute columns of 7 and S to respect the birth of relative
features. Call these A and B respectively.

43



ONE MORE U-MATCH PROPERTY

® Ais a square, invertible matrix of size m x m.
® B is a (not necessarily square) matrix of size m x n.

® [, is a filtration on a vector space K™ such that F;IK™
describes the span of the first i columns of A.

Similarly, define G, to be a filtration on the columns of B.

If the columns of B do not span the columns of A, let
Gpt+1 = K™ to ensure G, terminates.
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ONE MORE U-MATCH PROPERTY

® Ais a square, invertible matrix of size m x m.

® B is a (not necessarily square) matrix of size m x n.

Fe is a filtration on a vector space IK"” such that F;IK™
describes the span of the first i columns of A.

Similarly, define G, to be a filtration on the columns of B.

If the columns of B do not span the columns of A, let
Gpt+1 = K™ to ensure G, terminates.

Assume the above conditions hold. It follows that, given the U-
Match TM = (A=1B)S, then the columns of AT contain a basis
for each F; and G;j for i,j € {1,..., m}.



STEP 4: U-MATCH

Let K and Ky be simplicial complexes equipped with finite filtra-
tions FeK and G,Kp, and suppose that for any filtration value t
we have G;Ky C F;K. Apply the following steps:
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STEP 4: U-MATCH

Let K and Ky be simplicial complexes equipped with finite filtra-
tions FeK and G,Kp, and suppose that for any filtration value t
we have G;Ky C F;K. Apply the following steps:

1. Construct relative boundary matrix D.

2. Perform a U-Match decomposition 7TM = DS.

3. Obtain A and B by permuting columns of 7 and S.

4. Perform a U-Match Decomposition I M = (A~1B).7.

Suppose Rellm(D) has dimension i and RelKer(D) has dimension
J at filtration value t. If the above steps are applied, then the set

COL (AT M)\ COLI(AT)

contains a basis for H,(F:K, G:Kp).



STABILITY



STABILITY

® What does it mean for a persistence algorithm to be stable?
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STABILITY

® What does it mean for a persistence algorithm to be stable?
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STABILITY

® What does it mean for a persistence algorithm to be stable?

® We showed that the U-Match PRH algorithm is stable using a
few previously established results!

47
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ALGORITHM DETAILS



STEP 1: THE BOUNDARY MATRIX

Assume that you start with distance matrices DK and DKj.

Construct a VR complex from DK to obtain F, a filtered list
of simplices corresponding to FoK.
Similarly construct G from DKj.

® Use scale parameter g1 < --- < gy for DK and scale
parameter §; < --- < dy for DKj.

® Require that 6; < &; for any t < N.

® Thus, G;Ky C F:K for each t < N.

Use F and G to construct relative boundary matrix D. This is
just a sorting algorithm!
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STEP 3: PERMUTE COLUMNS

Do this with a sorting algorithm, using the following two
algorithms as order operators.

Algorithm 1 Test Relative Cycle Birth

Require: A positive integer ¢ which is a column index in M that
corresponds to the column of S given by a = COL(S).
Ensure: Some a € [0,00) describing the birth of « as a relative
cycle.
1. m< COL(M)
2: x < b(m) in GeKp
30 y < b(a) in FoK
4: a <+ max(x,y)

For step 1, note that Do =D - COL(S) =T - COL(M).
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STEP 3: PERMUTE COLUMNS

Algorithm 2 Test Relative Boundary Birth

Require: A positive integer r which is a row index in M that cor-

responds to the column of T given by o = COL,(T).

Ensure: Some a € [0,00) describing the birth of « as a relative

_ =
= O

© e N TN

boundary.
x < b(a) in GeKp
m, <— ROW,(M)
if r € ro then
¢ < index of nonzero entry in m,
me < COL(M)
y < b(mc) in FoK
end if
if r €7, then
y 4 0
end if
: a < min(x,y)

54



	Background
	Persistent Homology
	Persistent Relative Homology
	The U-Match Decomposition
	The U-Match PRH Algorithm
	Stability
	Acknowledgements
	Thank You!
	Algorithm Details

