PERSISTENT RELATIVE HOMOLOGY FOR TOPOLOGICAL DATA ANALYSIS

Christian Lentz

April 17, 2024

BACKGROUND

TOPOLOGY

Topology is concerned with certain *qualitative properties* of spaces/objects that are invariant (do not change) under certain types of *continuous transformations* (functions).

SIMPLICIAL COMPLEXES

• Study a complicated structure by breaking it into "simple pieces" called **simplices**.

$$\cdot$$
 \mapsto \bigtriangledown \diamondsuit

Definition

- A simplicial complex is a subspace $K \subseteq \mathbb{R}^n$ such that
- 1. if $\sigma \in K$ and $\tau \subset \sigma$ then $\tau \in K$.
- 2. if $\sigma, \tau \in K$ then $\sigma \cap \tau$ is empty or a subsimplex of both.
 - Graphs/networks, topological spaces, point cloud data, etc.

CHAIN VECTOR SPACES

Definition

Define $C_n(K)$ to be the \mathbb{Z}_2 vector space whose basis is the set of *n*-simplices in *K*.

- A linear combination of *n*-simplices is an *n*-chain.
- For example, $C_2(K)$ is spanned by the following basis of 2-simplices:

$$\{ \mathbf{V} \land \mathbf{V} \land \mathbf{V} \neq \mathbf{V} \}$$

BOUNDARY OPERATORS

Definition

Define the (alternating) **boundary operator** as a linear transformation $\partial_n : C_n(K) \to C_{n-1}(K)$ given by

$$[v_0v_1\ldots v_n]\mapsto \sum_{j=0}^n (-1)^j [v_0v_1\ldots \hat{v}_j\ldots v_n].$$

• Map an *n*-simplex to an (n-1)-chain which is its boundary.

- Every function has a
 - Kernel: All inputs that map to zero.
 - Image: All outputs.
- Elements in the kernel of a boundary operator are called **cycles**, and elements in the image are **boundaries**.

What is ∂_1 for the following simplicial complex K?

- Recall $\partial_1 : C_1(K) \to C_0(K)$
- $C_1(K) = \{[ab], [ac], [bc], [cd], [ce], [de]\}$
- $C_0(K) = \{a, b, c, d, e\}$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} ab \end{bmatrix} \begin{bmatrix} ac \end{bmatrix} \begin{bmatrix} bc \end{bmatrix} \begin{bmatrix} cd \end{bmatrix} \begin{bmatrix} ce \end{bmatrix} \begin{bmatrix} de \end{bmatrix}$$
$$\partial_1 = \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix}$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} [ab] & [ac] & [bc] & [cd] & [ce] & [de] \\ a \\ b \\ d \\ c \\ d \\ e \\ \end{bmatrix}$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} [ab] & [ac] & [bc] & [cd] & [ce] & [de] \\ a \\ b \\ 1 \\ a \\ c \\ d \\ e \\ \end{bmatrix} \begin{pmatrix} -1 & -1 \\ 1 \\ 1 \\ a \\ b \\ 1 \\ a \\ b \\ a$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} ab \\ ac \\ -1 & -1 \\ 1 & -1 \\ 0 \\ ac \\ dc \\ e \\ \end{bmatrix} \begin{bmatrix} cc \\ -1 & -1 \\ 1 & -1 \\ 1 & 1 \\ cc \\ dc \\ e \\ \end{bmatrix}$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} ab \end{bmatrix} \begin{bmatrix} ac \end{bmatrix} \begin{bmatrix} bc \end{bmatrix} \begin{bmatrix} cd \end{bmatrix} \begin{bmatrix} ce \end{bmatrix} \begin{bmatrix} de \end{bmatrix}$$
$$\begin{array}{cccc} a \\ b \\ 1 \\ c \\ d \\ e \\ \end{array} \begin{pmatrix} -1 & -1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ e \\ \end{pmatrix}$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} ab \end{bmatrix} \begin{bmatrix} ac \end{bmatrix} \begin{bmatrix} bc \end{bmatrix} \begin{bmatrix} cd \end{bmatrix} \begin{bmatrix} ce \end{bmatrix} \begin{bmatrix} de \end{bmatrix}$$
$$\begin{array}{cccc} a \\ b \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \\ -1 & -1 \\ e \\ \end{array} \begin{array}{cccc} 1 & 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \\ \end{array} \right)$$

CHAIN COMPLEXES

• A chain complex is a sequence of boundary operators where $\partial_{n-1}\partial_n = 0$, which means a boundary has no boundary.

- Notice: $\operatorname{Im}(\partial_{n+1}) \subseteq \operatorname{Ker}(\partial_n)$
- Every (n + 1)-boundary is also an n-cycle, but the converse is not always true.

HOMOLOGY GROUPS

- A **homology group** $H_n(K)$ describes all of the *n*-dimensional holes in the simplicial complex *K*.
- Deterrmine which cycles are not boundaries.

$$H_n(K) = \operatorname{Ker}(\partial_{n-1})/\operatorname{Im}(\partial_n)$$
$$= cycles - boundaries$$

PERSISTENT HOMOLOGY

WHAT IS PERSISTENT HOMOLOGY?

- Persistent homology (PH) is a tool in topological data analysis (TDA) used to study the shape of data.
- Apply homology to a sequence of nested topological spaces called a **filtered topological space**.
- Features which are *born* and *die* quickly are **noise**.
- Associate features of interest as topological holes.
- Important features persist throughout filtration.

Let ϵ_1 be a positive real number. Place a disk with a radius of ϵ_1 around each point.

Let ϵ_1 be a positive real number. Place a disk with a radius of ϵ_1 around each point.

This is a simplicial complex. Call it K_1 .

Now let $\epsilon_1 \leq \epsilon_2$ and repeat, with the rule that anytime k + 1 points are pairwise within $2\epsilon_2$ of each other, form a k simplex:

Notice that $K_1 \subseteq K_2$. Also, there are now **connected components** in K_2 .

Notice that K_3 has one-dimensional features, called **loops**.

Finally, we have simplicial complex K_4 :

The scale parameter $\epsilon_1 \leq \epsilon_2 \leq \epsilon_3 \leq \epsilon_4$ gives us the following filtration.

Notice that homological features (connected components, loops, etc) emerge. Some of them stay, and some of them are removed quickly! This method is called a **Čech complex**.

DEFINITIONS

Definition

A finite filtration on a simplicial complex K, denoted $F_{\bullet}K$, is given by $F_1K \subseteq F_2K \subseteq \cdots \subseteq F_NK$, where $F_NK = K$.

Definition

A simplicial complex K equipped with a filtration F is called a **filtered simplicial complex**.

Definition

Say that $\sigma \in K$ born at $F_t K$ has a **filtration value** $b(\sigma) = t$. Thus, $F_t K = \{ \sigma \in K : b(\sigma) \le t \}$.

PERSISTENT RELATIVE HOMOLOGY

QUOTIENT SPACES

Definition

Suppose topological spaces X and A such that $A \subseteq X$. Then the **quotient space** is defined as

$$X/A = (X \setminus A) \sqcup *$$

where * is a single point.

Example (The Infinite Bouquet¹)

$$\mathbf{R} = \bigwedge_{-1} \bigcap_{0} \bigcap_{1} \bigcap_{2} \bigcap_{\mathbf{R}/\mathbf{Z}} \bigcap_{\mathbf{R}/\mathbf{$$

¹Image from *Essential Topology* by Martin D. Crossley (2005).

RELATIVE CHAINS

• Suppose two simplicial complexes K and K_0 where $K_0 \subset K$.

Definition

The relative chain vector space is the quotient vector space $C_n(K, K_0) = C_n(K)/C_n(K_0)$, which describes the span of all relative n-chains in K/K_0 .

- $C_n(K, K_0)$ partitions a basis for $C_n(K)$ into cosets (or equivalence classes) of the form $c + C_n(K_0)$.
- Equivalence classes $\{[c]\}$ give a basis for all chains in $K K_0$.

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative *n*-Cycle is any *n*-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any *n*-chain with a boundary in the subspace K_0 .

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative *n*-Cycle is any *n*-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any *n*-chain with a boundary in the subspace K_0 .

Definition

A Relative n-Boundary is any relative n-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$. In words, any n-cycle which differs from an absolute boundary by a chain in the subspace K_0 .

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative *n*-Cycle is any *n*-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any *n*-chain with a boundary in the subspace K_0 .

Definition

A Relative n-Boundary is any relative n-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$. In words, any n-cycle which differs from an absolute boundary by a chain in the subspace K_0 .

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative *n*-Cycle is any *n*-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any *n*-chain with a boundary in the subspace K_0 .

Definition

A Relative n-Boundary is any relative n-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$. In words, any n-cycle which differs from an absolute boundary by a chain in the subspace K_0 .

 $\partial_1(\alpha) = \partial_1(\partial_2(\beta)) + \partial_1(\gamma) = \partial_1(\gamma) \in C_0(\mathcal{K}_0).$

PERSISTENT RELATIVE HOMOLOGY

- Given $F_{\bullet}K$ and $G_{\bullet}K_0$.
- Persistent Relative Homology (PRH) is the homology of a filtered quotient space K/K₀.
- Require that $G_t K_0 \subseteq F_t K$ for each time-step t.
- Do not require that $\sigma \in K$ satisfy $b_F(\sigma) = b_G(\sigma)$.

THE U-MATCH DECOMPOSITION

DEFINITION

 Assume D is the block boundary matrix of a chain complex, so D is square and D² = 0.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & \\ & & \ddots & \ddots & \\ & & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

DEFINITION

 Assume D is the block boundary matrix of a chain complex, so D is square and D² = 0.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & \\ & \ddots & \ddots & \\ & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

• Reduce *D* bottom to top and left to right. T^{-1} records row operations, and *S* records column operations.

$$\begin{pmatrix} D & I_n \\ I_m & 0 \end{pmatrix} \mapsto \begin{pmatrix} M & \mathcal{T}^{-1} \\ \mathcal{S} & 0 \end{pmatrix}$$
DEFINITION

 Assume D is the block boundary matrix of a chain complex, so D is square and D² = 0.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & \\ & \ddots & \ddots & \\ & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

• Reduce *D* bottom to top and left to right. T^{-1} records row operations, and *S* records column operations.

$$\begin{pmatrix} D & I_n \\ I_m & 0 \end{pmatrix} \mapsto \begin{pmatrix} M & \mathcal{T}^{-1} \\ \mathcal{S} & 0 \end{pmatrix}$$

- A U-Match Decomposition is a tuple of matrices $(\mathcal{T}, \mathcal{M}, \mathcal{D}, \mathcal{S})$ which satisfy the following three conditions:
 - $\mathcal{T}M = D\mathcal{S}$
 - *M* is a matching matrix
 - \mathcal{T} and \mathcal{S} are both upper triangular and invertible

U-MATCH DECOMPOSITION

- Persistence algorithms use matrix decomposition techniques.
- ${\mathcal T}$ and ${\mathcal S}$ contain information about homology.

U-MATCH DECOMPOSITION

- Persistence algorithms use matrix decomposition techniques.
- ${\mathcal T}$ and ${\mathcal S}$ contain information about homology.

 $\mathcal{T} \times M = D \times S$

• Ordering the rows and columns of *D* carefully allows us to compute persistent homology.

U-MATCH PROPERTIES

 Let *TM* = *DS* be a U-match decomposition, where *D* is the block boundary matrix of a chain complex.

U-MATCH PROPERTIES

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix M.

U-MATCH PROPERTIES

Let *TM* = *DS* be a U-match decomposition, where *D* is the block boundary matrix of a chain complex. Let *r*_• and *c*_• denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix *M*.

Lemma

The set of indices r_{\bullet} and c_{\bullet} are disjoint. Hence, $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

Outline of proof.

- $\mathcal{T}M = D\mathcal{S} \Rightarrow \mathcal{S}^{-1}\mathcal{T}M = \mathcal{S}^{-1}D\mathcal{S}.$
- $(S^{-1}DS)^2 = S^{-1}D^2S = 0.$
- $(S^{-1}TM)^2 = 0$ implies that indices of nonzero rows and columns of $S^{-1}TM$ are disjoint.

U-MATCH PROPERTIES (CONTINUED)

Let *TM* = *DS* be a U-match decomposition, where *D* is the block boundary matrix of a chain complex. Let *r*_• and *c*_• denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix *M*.

Corollary

Columns of \mathcal{T} indexed by the set r_{\bullet} give a basis for Im(D), which are the boundaries.

Outline of Proof:

- COL_j(TM) = COL_j(DS) ⇒ COL_j(TM) = D · COL_j(S). So COL_j(TM) is the boundary of some column of S.
- Can write COL_i(TM) = COL_i(T) ⋅ M where i corresponds to nonzero row in M.

U-MATCH PROPERTIES (CONTINUED)

Let *TM* = *DS* be a U-match decomposition, where *D* is the block boundary matrix of a chain complex. Let *r*_• and *c*_• denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix *M*.

Corollary

Columns of S indexed by the set $\overline{c_{\bullet}}$ contain a basis for Ker(D), which are the cycles.

Outline of Proof:

- Assume $j \in \overline{c_{\bullet}}$.
- $D \cdot COL_j(S) = \mathcal{T} \cdot COL_j(M) = \mathcal{T} \cdot \vec{0} = \vec{0}.$

U-MATCH PROPERTIES (CONTINUED)

- U-Match allows us to compute **matched bases** for cycles and boundaries.
- This means a set of basis vectors for Im(D) is a subset of a set of basis vectors for Ker(D).
- How? Prove this by construction!
 - Construct a matrix J from the matrix S with the substitution

$$COL_{r_j}(\mathcal{S}) \mapsto COL_{c_j}(\mathcal{T}M).$$

- Columns of J contain a basis for both Im(D) and Ker(D).
 - $COL_{\overline{c_{\bullet}}}(J) = Ker(D)$
 - $COL_{r_{\bullet}}(J) = Im(D)$
- Recall that $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

U-MATCH FOR PERSISTENCE

- Suppose a filtered simplicical complex $F_{\bullet}K$.
- Construct the block boundary matrix where filtration value increases with row and column indices.
- This ordering is carried over to \mathcal{T} , \mathcal{S} and M:

$$c \in F_{\bullet}K \qquad c \in F_{\bullet}K$$

$$s \in F_{\bullet}K \qquad T \qquad) \qquad c \in F_{\bullet}K \qquad M \qquad)$$

$$s \in F_{\bullet}K \qquad c \in F_{\bullet}K \qquad s \in F_{\bullet}K \qquad C \in F_{\bullet}K \qquad s \in F_{\bullet}K \qquad S \qquad)$$

THE U-MATCH PRH ALGORITHM

1. Permute rows of block boundary matrix D to obtain a **relative boundary matrix** D.

- 1. Permute rows of block boundary matrix D to obtain a **relative boundary matrix** D.
- 2. Perform a U-Match on \mathcal{D} to get, $\mathcal{T}M = \mathcal{DS}$.

- 1. Permute rows of block boundary matrix D to obtain a **relative boundary matrix** D.
- 2. Perform a U-Match on \mathcal{D} to get, $\mathcal{T}M = \mathcal{DS}$.
- 3. Permute columns of \mathcal{T} to obtain a matrix \mathcal{A} , and columns of \mathcal{S} to obtain a matrix \mathcal{B} .

- 1. Permute rows of block boundary matrix D to obtain a **relative boundary matrix** D.
- 2. Perform a U-Match on \mathcal{D} to get, $\mathcal{T}M = \mathcal{DS}$.
- Permute columns of T to obtain a matrix A, and columns of S to obtain a matrix B.
- 4. Perform a U-Match on $\mathcal{A}^{-1}\mathcal{B}$ to obtain $\mathcal{T}\mathcal{M} = (\mathcal{A}^{-1}\mathcal{B})\mathcal{S}$.

Result: One single matrix whose columns contain a filtered basis for the relative cycles and relative boundaries!

STEP 1: THE BOUNDARY MATRIX

- Suppose you have the boundary matrix of a filtered simplicial complex F_•K, and you also have a filtered subcomplex G_•K₀.
- Permute rows (top to bottom) to **respect** birth of simplices in $G_{\bullet}K_0$.

• Why?

STEP 1: THE BOUNDARY MATRIX

- Suppose you have the boundary matrix of a filtered simplicial complex F_•K, and you also have a filtered subcomplex G_•K₀.
- Permute rows (top to bottom) to **respect** birth of simplices in $G_{\bullet}K_0$.

 Why? Relative chains correspond to cosets c + C_n(K₀), and U-Match reduces rows from bottom to top!

The U-Match \$\mathcal{T}M = \mathcal{D}S\$ has a few key differences since we use \$\mathcal{D}\$ rather than \$D\$.

$$c \in G_{\bullet}K_{0} \qquad c \in F_{\bullet}K$$

$$s \in G_{\bullet}K_{0} \left(\begin{array}{c} \mathcal{T} \\ \end{array}\right) \qquad c \in G_{\bullet}K_{0} \left(\begin{array}{c} M \\ \end{array}\right)$$

$$s \in F_{\bullet}K \qquad c \in F_{\bullet}K$$

$$s \in G_{\bullet}K_{0} \left(\begin{array}{c} \mathcal{D} \\ \end{array}\right) \qquad s \in F_{\bullet}K \left(\begin{array}{c} S \\ \end{array}\right)$$

• Using this modified U-Match, we can prove the following:

Proposition

Suppose that \mathcal{V}_{K_0} is a vector space with dimension *i* spanning all chains in K_0 . Then the first *i* columns of \mathcal{T} from the U-Match $\mathcal{T}M = \mathcal{DS}$ are a basis which spans \mathcal{V}_{K_0} .

Lemma

Suppose a U-Match $\mathcal{T}M = \mathcal{DS}$. Then

- (a) the columns of S contain a basis for the relative cycles denoted RelKer(D).
- (b) the columns of T contain a basis for the relative boundaries denoted Rellm(D).

STEP 3: PERMUTE COLUMNS

- The previous results show that this method can compute relative homology. How do we turn this into persistent relative homology?
- Permute columns of \mathcal{T} and \mathcal{S} to **respect** the birth of relative features. Call these \mathcal{A} and \mathcal{B} respectively.

ONE MORE U-MATCH PROPERTY

- A is a square, invertible matrix of size $m \times m$.
- B is a (not necessarily square) matrix of size $m \times n$.
- *F* is a filtration on a vector space \mathbb{K}^m such that *F*_{*i*} \mathbb{K}^m describes the span of the first *i* columns of *A*.
- Similarly, define G_{\bullet} to be a filtration on the columns of B.
- If the columns of *B* do not span the columns of *A*, let $G_{n+1} = \mathbb{K}^m$ to ensure G_{\bullet} terminates.

ONE MORE U-MATCH PROPERTY

- A is a square, invertible matrix of size $m \times m$.
- B is a (not necessarily square) matrix of size $m \times n$.
- *F* is a filtration on a vector space \mathbb{K}^m such that $F_i\mathbb{K}^m$ describes the span of the first *i* columns of *A*.
- Similarly, define G_{\bullet} to be a filtration on the columns of B.
- If the columns of *B* do not span the columns of *A*, let $G_{n+1} = \mathbb{K}^m$ to ensure G_{\bullet} terminates.

Lemma (Basis Matching)

Assume the above conditions hold. It follows that, given the U-Match $\mathcal{T}M = (A^{-1}B)S$, then the columns of $A\mathcal{T}$ contain a basis for each F_i and G_j for $i, j \in \{1, ..., m\}$.

Theorem

Theorem

Let K and K_0 be simplicial complexes equipped with finite filtrations $F_{\bullet}K$ and $G_{\bullet}K_0$, and suppose that for any filtration value twe have $G_tK_0 \subseteq F_tK$. Apply the following steps:

1. Construct relative boundary matrix \mathcal{D} .

Theorem

- 1. Construct relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match decomposition $\mathcal{T}M = \mathcal{DS}$.

Theorem

- 1. Construct relative boundary matrix $\mathcal{D}.$
- 2. Perform a U-Match decomposition $\mathcal{T}M = \mathcal{DS}$.
- 3. Obtain \mathcal{A} and \mathcal{B} by permuting columns of \mathcal{T} and \mathcal{S} .

Theorem

- 1. Construct relative boundary matrix $\mathcal{D}.$
- 2. Perform a U-Match decomposition $\mathcal{T}M = \mathcal{DS}$.
- 3. Obtain \mathcal{A} and \mathcal{B} by permuting columns of \mathcal{T} and \mathcal{S} .
- 4. Perform a U-Match Decomposition $\mathscr{TM} = (\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Theorem

Let K and K_0 be simplicial complexes equipped with finite filtrations $F_{\bullet}K$ and $G_{\bullet}K_0$, and suppose that for any filtration value twe have $G_tK_0 \subseteq F_tK$. Apply the following steps:

- 1. Construct relative boundary matrix $\mathcal{D}.$
- 2. Perform a U-Match decomposition $\mathcal{T}M = \mathcal{DS}$.
- 3. Obtain \mathcal{A} and \mathcal{B} by permuting columns of \mathcal{T} and \mathcal{S} .

4. Perform a U-Match Decomposition $\mathscr{TM} = (\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Suppose $\operatorname{RelIm}(\mathcal{D})$ has dimension *i* and $\operatorname{RelKer}(\mathcal{D})$ has dimension *j* at filtration value *t*.

Theorem

Let K and K_0 be simplicial complexes equipped with finite filtrations $F_{\bullet}K$ and $G_{\bullet}K_0$, and suppose that for any filtration value twe have $G_tK_0 \subseteq F_tK$. Apply the following steps:

- 1. Construct relative boundary matrix $\mathcal{D}.$
- 2. Perform a U-Match decomposition $\mathcal{T}M = \mathcal{DS}$.
- 3. Obtain \mathcal{A} and \mathcal{B} by permuting columns of \mathcal{T} and \mathcal{S} .
- 4. Perform a U-Match Decomposition $\mathscr{TM} = (\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Suppose $\text{RelIm}(\mathcal{D})$ has dimension *i* and $\text{RelKer}(\mathcal{D})$ has dimension *j* at filtration value *t*. If the above steps are applied, then the set

 $COL_J(\mathcal{ATM}) \setminus COL_I(\mathcal{AT})$

contains a basis for $H_n(F_tK, G_tK_0)$.

STABILITY

• What does it mean for a persistence algorithm to be stable?

• What does it mean for a persistence algorithm to be stable?

• What does it mean for a persistence algorithm to be stable?

• We showed that the U-Match PRH algorithm is stable using a few previously established results!

ACKNOWLEDGEMENTS

Lori Ziegelmeier Greg Henselman-Petrusek Xintan Xia Macalester Col. PNNL Macalester Col.

THANK YOU!

ALGORITHM DETAILS

STEP 1: THE BOUNDARY MATRIX

- Assume that you start with distance matrices *DK* and *DK*₀.
- Construct a VR complex from DK to obtain \mathcal{F} , a filtered list of simplices corresponding to $F_{\bullet}K$.
- Similarly construct \mathcal{G} from DK_0 .
 - Use scale parameter $\varepsilon_1 \leq \cdots \leq \varepsilon_N$ for *DK* and scale parameter $\delta_1 \leq \cdots \leq \delta_N$ for *DK*₀.
 - Require that $\delta_t \leq \varepsilon_t$ for any $t \leq N$.
 - Thus, $G_t K_0 \subseteq F_t K$ for each $t \leq N$.
- Use *F* and *G* to construct relative boundary matrix *D*. This is just a sorting algorithm!

Do this with a sorting algorithm, using the following two algorithms as order operators.

Algorithm 1 Test Relative Cycle Birth

Require: A positive integer *c* which is a column index in *M* that corresponds to the column of *S* given by $\alpha = COL_c(S)$. **Ensure:** Some $a \in [0, \infty)$ describing the birth of α as a relative cycle.

- 1: $m \leftarrow COL_c(M)$ 2: $x \leftarrow b(m)$ in $G_{\bullet}K_0$
- 3: $y \leftarrow b(\alpha)$ in $F_{\bullet}K$
- 4: $a \leftarrow max(x, y)$

For step 1, note that $\mathcal{D}\alpha = \mathcal{D} \cdot COL_c(\mathcal{S}) = \mathcal{T} \cdot COL_c(\mathcal{M})$.

Algorithm 2 Test Relative Boundary Birth

- **Require:** A positive integer r which is a row index in M that corresponds to the column of \mathcal{T} given by $\alpha = COL_r(\mathcal{T})$.
- **Ensure:** Some $a \in [0, \infty)$ describing the birth of α as a relative boundary.

1:
$$x \leftarrow b(\alpha)$$
 in $G_{\bullet}K_0$

- 2: $m_r \leftarrow ROW_r(M)$
- 3: if $r \in r_{\bullet}$ then
- 4: $c \leftarrow \text{ index of nonzero entry in } m_r$

5:
$$m_c \leftarrow COL_c(M)$$

6:
$$y \leftarrow b(m_c)$$
 in $F_{\bullet}K$

- 7: end if
- 8: if $r \in \overline{r_{\bullet}}$ then
- 9: $y \leftarrow \infty$

10: end if

11: $a \leftarrow min(x, y)$